欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    相似三角形教案和例题.docx

    • 资源ID:13116577       资源大小:143.50KB        全文页数:14页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    相似三角形教案和例题.docx

    1、相似三角形教案和例题学生学 校年 级教师授课日期授课时段课题相似三角形专题重点难点掌握相似三角形性质,寻找相似三角形对应元素的方法与技巧;用转化的思想、类比的方法进行归纳推理,得到相似三角形的性质;相似三角形判定和性质的综合运用。教学步骤及教学内容教学内容:讲解相似三角形、相似多边形、相似比的概念;以及相似三角形的性质,相似三角形对应高、对应中线、对应角平分线之比都等于相似比;让学生学会求相似比或相似系数。熟记相似三角形的判定定理,并会应用证明。熟记相似三角形的周长比和面积比。教学步骤:1.复习引入:什么是相似三角形?什么是它们的相似比?相似三角形相似,那么它们边和角各有什么性质? 2.讲解例

    2、题:重点讲解相似三角形的判定定理,并通过课堂练习加以巩固。3.小节归纳:三角形相似,那么它们边和角各有什么性质。如何判断三角形相似。4.课后巩固:布置相关专题练习。 日期: 年 月 日相似三角形专题 一、知识概述(一)相似三角形1、对应角相等,对应边成比例的两个三角形,叫做相似三角形 当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; 相似三角形的特征:形状一样,但大小不一定相等; 相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例,其应用广泛2、相似三角形对应边的比

    3、叫做相似比 全等三角形一定是相似三角形,其相似比k=1所以全等三角形是相似三角形的特例其区别在于全等要求对应边相等,而相似要求对应边成比例 相似比具有顺序性例如ABCABC的对应边的比,即相似比为k,则ABCABC的相似比 ,当且仅当它们全等时,才有k=k=1 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似 定理的基本图形有三种情况,如图其符号语言: DEBC,ABCADE; 这个定理是用相似三角形定义推导出来的

    4、三角形相似的判定定理它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; (二)相似三角形的判定1、相似三角形的判定: 判定定理(1):两角对应相等,两三角形相似 判定定理(2):两边对应成比例且夹角相等,两三角形相似 判定定理(3):三边对应成比例,两三角形相似 有平行线时,用预备定理; 已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2; 已有两边对应成比例时,可考虑利用判定定理2或判定定理3但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等2、直角三角形相似的判定: 斜边和一条直角边对应成比例

    5、,两直角三角形相似 由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似; (三)三角形的重心1、三角形三条中线的交点叫做三角形的重心2、三角形的重心与顶点的距离等于它与对边中点的距离的两倍二、重点难点疑点突破1、寻找相似三角形对应元素的方法与技巧 正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功通常有以下几种方法: (1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对

    6、相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边; (2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角三、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对

    7、应成比例且夹角相等,两三角形相似 找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似 找两边对应成比例 判定定理1或判定定理4 找顶角对应相等 判定定理1 找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3 e)相似形的传递性 若12,23,则13五、“三点定形法”即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做

    8、“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。例1.已知:如图,ABC中,CEAB,BFAC.求证: 例2.如图,CD是RtABC的斜边AB上的高,BAC的平分线分别交BC、CD于点E、F,ACAE=AFAB吗?说明理由。例3.已知:如图,ABC中,ACB=900,AB的垂直平分线交AB于D,交BC延长线于F。 求证:CD2=DEDF。 六、过渡法(或叫代换法

    9、)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明1、 等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。例1:如图3,ABC中,AD平分BAC, AD的垂直平分线FE交BC的延长线于E求证:

    10、DE2BECE2、 等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。例2:如图4,在ABC中,BAC=90,ADBC,E是AC的中点,ED交AB的延长线于点F求证:3、等积过渡法(等积代换法)思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若三点定形法不能确定两个相似三角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,若以上三种

    11、方法行不通时,则考虑用等积代换法。例3:如图5,在ABC中,ACB=90,CD是斜边AB上的高,G是DC延长线上一点,过B作BEAG,垂足为E,交CD于点F求证:CD2DFDG巩固与提高 1 如图,点D、E分别在边AB、AC上,且ADE=C 求证:(1)ADEACB; (2)ADAB=AEAC. (1题图) 2 如图,ABC中,点DE在边BC上,且ADE是等边三角形,BAC=120求证: (1)ADBCEA;(2)DE=BDCE; (3)ABAC=ADBC. (2题图)3 如图, 平行四边形ABCD中,E为BA延长线上一点, D=ECA. 求证:ADEC=ACEB .(此题为陷阱题,应注意条件

    12、中唯一的角相等,考虑平行四边形对边相等,用等线替代思想解决) 4 如图,AD为ABC中BAC的平分线,EF是AD的垂直平分线。求证:FD=FCFB。(此题四点共线,应积极寻找条件,等线替代,转化为证三角形相似。)5如图,E是平行四边形的边DA延长线上一点,EC交AB于点G,交BD于点F,求证:FC=FGEF.(此题再次出现四点共线,等线替代无法进行,可以考虑等比替代。)6如图,E是正方形ABCD边BC延长线上一点,连接AE交CD于F,过F作FMBE交DE于M.求证:FM=CF.(注:等线替代和等比替代的思想不局限于证明等积式,也可应用于线段相等的证明。此题用等比替代可以解决。)7如图,ABC中

    13、,AB=AC,点D为BC边中点,CEAB,BE分别交AD、AC于点F、G,连接FC.求证:(1)BF=CF. (2)BF=FGFE. 8如图,ABC=90,AD=DB,DEAB, 求证:DC=DEDF.9如图,ABCD为直角梯形,ABCD,ABBC,ACBD。AD= BD,过E作EFAB交AD于F.是说明:(1)AF=BE;(2)AF=AEEC.10ABC中,BAC=90,ADBC,E为AC中点。求证:AB:AC=DF:AF。11已知,CE是RTABC斜边AB上的高,在EC延长线上任取一点P,连接AP,作BGAP,垂足为G ,交CE于点D.试证:CE=EDEP.(注:此题要用到等积替代,将CE

    14、用射影定理替代,再化成比例式。) 课后练习:1如图,在ABC中,DEBC,EFAB,求证:ADEEFC2如图,梯形ABCD中,ABCD,点F在BC上,连DF与AB的延长线交于点G(1)求证:CDFBGF;(2)当点F是BC的中点时,过F作EFCD交AD于点E,若AB=6cm,EF=4cm,求CD的长3如图,点D,E在BC上,且FDAB,FEAC求证:ABCFDE4如图,已知E是矩形ABCD的边CD上一点,BFAE于F,试说明:ABFEAD5已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:ADMMCP6如图,ACB=ADC=90,AC=,AD=2问当AB的长为多少时,这两个直角三角形相似7已知:如图,ABCADE,AB=15,AC=9,BD=5求AE8已知:如图RtABCRtBDC,若AB=3,AC=4(1)求BD、CD的长;(2)过B作BEDC于E,求BE的长


    注意事项

    本文(相似三角形教案和例题.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开