欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    同步整流技术总结.docx

    • 资源ID:14113705       资源大小:78.37KB        全文页数:10页
    • 资源格式: DOCX        下载积分:1金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要1金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    同步整流技术总结.docx

    1、同步整流技术总结同步整流总结1 概述近年来,为了适应微处理器的发展,模块电源的发展呈现两个明显的发展趋势:低压和快速动态响应,在过去的10年中,模块电源大大改善了分布式供电系统的面貌。即使是在对成本敏感器件如线路卡,单板安装,模块电源也提供了诱人的解决方案。然而,高速处理器持续降低的工作电压需要一个全新的,适应未来的电压方案,尤其考虑到肖特级二极管整流模块不能令人满意的效率。同步整流电路正是为了适应低压输出要求应运而生的。由于一般的肖特基二极管的正向压降为0.3V以上,在低压输出时模块的效率就不能做的很高,有资料表明采用肖特基二极管的隔离式DC-DC模块电源的效率可以按照下式进行估算:我们假设

    2、采用0.4V的肖特基整流二极管,印制板的线路损耗为0.1V,则1.8V的模块最大的估算效率为72%。这意味着28%的能量被模块内部损耗了。其中由于二极管导通压降造成的损耗占了约15%。随着半导体工艺的发展,低压功率MOS管的的有着越来越小的通态电阻,越来越低的开关损耗,现在IR公司最新的技术可以制作30V/2.5m的MOS管,在电流为15A时,导通压降为0.0375,比采用肖特基二极管低了一个数量级。所以近年来对同步整流电路的研究已经引起了人们的极大关注。在中大功率低压输出的DC-DC变换器的产品开发中,采用低压功率MOSFET替代肖特基二极管的方案得到了广泛的认同。今天,采用同步整流技术的O

    3、N-BOARD 模块已经广泛应用于通讯的所有领域。2 同步整流电路的工作原理图1 采用同步整流的正激电路示意图(无复位绕组)同步整流电路与普通整流电路的区别在于它采用了MOS管代替二极管,而MOS管是它驱的开关器件,必须采用一定的方式控制MOS管的开关。同步整流电路中功率MOS管的驱动方式主要有两种:自驱动和它驱动。它驱动的方式与普通MOS管的驱动方式相同,通过控制电路控制整流和续流MOS管的栅源电压实现同步开关的目的。而自驱动一般应用于隔离式的变换器中,下面举个个例子说明上图是同步整流电路在正激电路中应用的实例,从图中可以看出,整流管VT3和续流管VT2的驱动电压从变压器的副边绕组取出,加在

    4、MOS管的栅G和漏D之间,如果在独立的电路中MOS管这样应用不能完全开通,损耗很大,但用在同步整流时是可行的简化方案。由于这两个管子开关状态互琐,一个管子开,另一个管子关,所以我们只简要分析电感电流连续时的开通情况,我们知道MOS管具有体内寄生的反并联二极管,这样电感电流连续应用时,MOS管在真正开通之前并联的二极管已经开通,把源S和漏D相对栅的电平保持一致,加在GD之间的电压等同于加在GS之间的电压,这样变压器副边绕组同铭端为正时,整流管VT3的栅漏电压为正,整流管零压开通,当变压器副边绕组为负时,续流管VT2开通,滤波电感续流。3 同步整流电路的应用设计注意事项同步整流电路的概念由来已久,

    5、不过在产品中大量应用只是最近几年的事。这一方面是因为半导体技术的发展,另一方面在隔离式变换器中采用同步整流也存在一定的问题。下面以图1为例进行详细的说明3.1 轻载效率低和同步整流管电压尖峰。由于功率MOS管开通后为双向导电器件,输出滤波电感的电流不可能不连续,当轻载或空载时,输出滤波电感的电流下降到0后会继续反方向增加,直到整流二极管开通。这样虽然空载稳定性很容易保证,但这时造成续流管和滤波电感的一个环流,形成滤波电感的铁损和铜损以及续流管和输出线路阻抗损耗比采用肖特基二极管的模块电源效率低。这种状况下,由于滤波电感的反向电流,续流管的并联体二极管反向,如果续流管的关断和整流管的开通之间的死

    6、区时间较长,续流管关断后,整流管没有开通,由于输出滤波电感的电流突变,就会造成续流管漏源和整流管栅源电压尖峰,损坏同步整流电路。在一般的MOS管中,由于栅源电压比漏源电压低很多,这样整流管损坏的概率比续流管大。所以在同步整流电路的设计中,一般输出滤波电感的电感量在设计允许的条件下尽量大,这样电感电流的上升和下降缓慢,可以大大降低电感电流的最大值,减小模块的空载损耗。但这种设计又会造成模块电源的输出动态响应太慢,所以还有一种解决方式是通过滤波电感电流检测控制整流和续流二极管开关条件,不允许电流反向。这种设计已经有产品应用。3.2 驱动不足和驱动过压在图1所示的同步整流电路中,如果变压器副边电压在

    7、主功率管开通之间已经复位到零,会造成续流管驱动电压提前为零,输出滤波电感通过并联的体二极管续流,增加模块的损耗。另外最大和最小占空比的选择很关键,如果占空比选择不合适,在输入电压变化时也有可能造成整流管或续流管驱动电压不足或过压,前者会造成模块的效率低下,后者会造成模块电源的失效。所以设计时一定要仔细计算模块电源变压器的驱动电压大小,限制控制芯片的最大驱动脉宽,必要时输入采用过压和欠压保护电路,确保不发生驱动过压和欠压,同时要选用合适的电路拓扑,尽量减小开关尖峰对驱动电压的影响。如果设计指标不能满足,可采用附加的驱动电路或采用独立的驱动绕组。论文中也有人在二次电源中采用两级变换来保证同步整流电

    8、压的恒定,前一级变换采用BUCK电路进行预稳压后进行隔离降压变换。这样后一级变换的占空比固定为50%左右,增加了同步整流电路的可靠性。3.3 不能直接并联当采用图1所示的同步整流电路的模块直接把输出端接在一起进行并联时,相当于在模块的输出端并联了一个电压源,这样通过边压器副边绕组可以把驱动电压直接加到续流二极管的GS之间,会造成续流管的损坏和另一模块输出电压的短路。当然可以采用独立的驱动绕组解决这个问题,但这又增加了变压器设计难度,降低了变压器磁芯利用率。同时双同步整流模块直接并联也会造成模块之间的环流,增加模块的损耗。4 同步整流电路的选择依据虽然同步整流电路可以提高模块电源的效率,但同步整

    9、流电路的应用面还是比较窄的。采用同步整流电路的一个主要目的是提高模块的效率,当模块的效率低于采用肖特基二极管时,采用同住整流电路也就失去了意义。下面介绍同步整流电路的选择依据。从上面的介绍我们可以看出,同步整流电路的应用只限于低压大功率输出的模块,目前主要的应用为输出电压小于等于5V的模块。原因除了轻载效率低以外,还有比较重要的一点在于功率半导体器件发展的滞后。在高压输出的应用中,仅通态压降一项指标就很难选择在额定输出电流下低于快恢复或超快恢复二极管正向压降的整流MOS管。另外在低压应用时,采用同步整流电路的应用面也有一定的局限,下面具体介绍。首先我们考察一下用户希望的模块性能。近几年的便携式

    10、设备包括电子笔记本,计算器,远程控制器,传呼机,手提电话等,电压为1.1-1.8V,其特点是负载变化大,多数情况下工作低于备用模式,长期轻载运行。要求DC-DC变换器具有如下特征:a)负载变化的整个范围内效率高。b)输出电压低(CMOS电路的损耗与电压的平方成正比,供电电压低,则电路损耗小)。c)功率密度高。为了迎合这这种发展,一种比较简洁的解决方案是提高模块的开关频率,但在频率提高以后,同步整流电路的优点逐渐减弱。从上面的介绍我们可以看出,同步整流电路通过一定的处理虽然可以满足a),但频率增加以后,MOS管整流河肖特基二极管整流的损耗发生了很大变化。图2和图3是一些学者做出的同步整流电路和一

    11、般肖特基二极管整流电路效率对比曲线的仿真结果。试验条件:输入电压Vin=5V输出电压Vout=2.0VBUCK开关管为P沟道MOSFET,Rdson=29m,Qs=22.5nC,Vgs=5V,开关时间tr=20ns,tf=30ns采用的肖特基二极管的参数Vf=0.3V3Apk Tj=75C,If(AV)max=3A同步整流电路中的续流管为N沟道MOSFET,Rdson=18m,Qs=22.5 nC,开关时间tr=15ns,tf=30ns同步整流电路两路驱动的死区时间为60ns纹波电流和平均电流之间的比值为50%-60%。电路拓扑:图2 同步整流电路和采用肖特基二极管电路效率随频率的变化曲线图2

    12、中,s(i,10,2)s代表同步整流电路,i表示开关频率,10表示输出电流,第三项表示主开关和同步整流开管并联的MOS管数量。从上表可以看出,采用同步整流电路在电流大于10A,开关频率大于700KHZ以后于普通的肖特基尔基二极管整流电路相比效率要低。在开关频率低于800KHZ的场合,采用同步整流电路具有更好的表现。图3 同步整流电路和肖特基二极管整流电路在不同在不同负载下效率曲线图2表明了在同步整流电路和肖特级二极管整流电路中,随着负载变化效率的变化情况,我们可以看出,在1.5MHz的开关频率,在全负载范围内,肖特基二极管整流电路比同步整流电路具有更高的效率,在600KHz的开关频率,电流小于

    13、9A时采用同步整流电路具有更高的效率,当电流大于9A时,采用肖特基二极管整流具有更高的效率。另外也有研究表明,如果模块的占空比减小,采用同步整流电路与普通肖特基二极管整流电路效率分割点的频率和电流也会呈上升的趋势。反过来,分割点的频率和电流呈下降的趋势。这主要因为采用同步整流电路存在两个严重的制约因素:并联的体内二极管和必须的死区时间。这两个因素大大限制了同步整流电路在大电流、高频率的应用。低压,大电流,高开关频率的应用场合,肖特级二极管整流比采用同步整流电路具有更低的损耗。 随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高了。不论是功率密度、效率和动态响应等方面都有了新

    14、要求,特别是要求输出电压越来越低,电流却越来越大。输出电压会从过去的3.3V降低到1.11.8V之间,甚至更低1。从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它们都是动态的负载,这就意味着负载电流会在瞬间变化很大,从过去的13A/s到将来的30A/s50A/s2。这就要求有能够输出电压低、电流大、动态响应好的变换器拓扑。而对称半桥加倍流同步整流结构的DC/DC变换器是最能够满足上面的要求的3。 本文对这种拓扑结构的变换器的工作原理作出了详细的分析说明,实验结果证明了它的合理性。 1 主电路拓扑结构 主电路拓扑如图1中所示。由图1可以看出,输入级的拓扑为半桥电路,而输出级是倍

    15、流整流加同步整流结构。由于要求电路输出低压大电流,则倍流同步整流结构是最合适的,这是因为: 图1 主电路拓扑 1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小; 2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电流纹波; 3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了; 4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大

    16、电流连接线只有2路,而在中间抽头的拓扑中有3路; 5)动态响应很好。 它唯一的缺点就是需要两个输出滤波电感,在体积上相对要大些。但是,有一种叫集成磁(integrated magnetic)的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁芯内,这样可以大大地减小变换器的体积。 2 电路基本工作原理 电路在一个周期内可分为4个不同的工作模式,如图2所示,理想的波形图如图3所示。 (a) 模式1t0t1 (b) 模式2t1t2 (c) 模式3t2t3 (d) 模式4t3t4 图2 工作模式图 图3 工作波形图 模式1t0t1 在t=t0时刻,开关管S1导通,变压器原边两端的电压为正,且有

    17、Vp=Vin/2;而开关管S2一直都处于关断状态,由于S1的导通,S2的漏源极电压(Vds2)被钳位到输入电压,即Vds2=Vin。变压器副边电压Vsec为高电平,同步开关管SR1的门极也是高电平,SR1导通。此时,负载的电流等于两个输出电感电流之和,且全部流经SR1。在这个模式下,滤波电感Lo1上的电流是增大的,而电感Lo2上的电流是减小的,它们的电流纹波有相互抵消的作用,所以,负载电流Io的纹波是很小的。 模式2t1t2 在t=t1时刻,S1关断。由于变压器漏感Lk的存在,电流要继续维持原来的方向,所以,如图3(b)中所示,此时在变压器原边存在两个回路,一个是由C1,Coss1,Lk构成,

    18、对S1的输出结电容Coss1充电;另一个是由C2,Coss2,Lk构成,对S2的输出结电容Coss2进行放电。最后S1及S2的漏源极电压都被钳位在输入电压的一半,即Vds2=Vds2=Vin/2。同时,变压器原边的电压此时为零,副边也是零,此时,SR1及SR2都处于导通状态,分别对两个输出电感上的电流进行续流。且两个电感上的电流都是减小的,所以,最后得到的输出负载电流(ILo1ILo2)是减小的。 模式3t2t3 在t=t2时刻,S2导通。S1处于关断状态,其两端电压也被钳位到输入电压,即Vds1=Vin。由图2(c)中可以看出,变压器原边的电压为负,且等于输入电压的一半,即Vp=Vin/2。

    19、相对应的同步管SR2导通,所有的负载电流都会流经SR2。且输出电感电流ILo2是增大的,ILo1是减小的。但最终得到的负载纹波电流是增大的。 模式4t3t4 在t=t3时刻,S2关断。在这个工作模式下,原边的工作原理同图2(b)正好相反。这时,S1及S2都处于关断状态。存储在变压器原边漏感中的能量对S1及S2输出结电容进行充放电。其中对Coss1是放电,而对Coss2进行充电。变压器原副边的电压都为零,副边的两个同步整流管都被触发导通。两个输出电感上的电流都在不断地减小,所以,总的负载电流是减小的。 在模式4t3t4后,接着就进入下一个周期。 3 实验及结果 在前面分析的拓扑基础上,完成了一个输入为DC 36V,输出为1V/25A的DC/DC变换器。这个电路中所用到的参数见表1所列,其中所有的参数和图1的主电路中所标注的是相对应的。 表1 实验参数 项目 参数或型号 输入(Vin) DC36V 输出(Vo/Io) DC 1V/25A S1,S2 IRLU2905 SR1,SR2 IRLR7833 Lo1,Lo2 2.2H Co 1500F/2.5V 磁芯(core) R42216EC


    注意事项

    本文(同步整流技术总结.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开