欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    整理反激式变压器的设计Word文档格式.docx

    • 资源ID:5261904       资源大小:122.38KB        全文页数:13页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    整理反激式变压器的设计Word文档格式.docx

    1、 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数 相等 NpIp = NsIs而导出. Ip亦可用下列方法表示:1.建设项目环境影响评价机构的资质管理Ic = Ip = 2Po / (*VIN*Dmax) :

    2、转换器的效率 公式导出如下: 输出功率 : Po = LIp2 / 2T 输入电压 : VIN = Ldi / dt设 di = Ip,且 1 / dt = f / Dmax,则:VIN = LIpf / Dmax 或 Lp = VIN*Dmax / Ipf 则Po又可表示为 :Po = VINf DmaxIp2 / 2f Ip = 1/2VINDmaxIp Ip = 2Po / VINDmax上列公式中 :VIN : 最小直流输入电压 (V) Dmax : 最大导通占空比 Lp : 变压器初级电感 (mH)Ip : 变压器原边峰值电流 (A)f : 转换频率 (KHZ)(1)规划和建设项目环

    3、境影响评价。图2 反激式转换器波形图 由上述理论可知,转换器的占空比与变压器的匝数比受限于开关晶体管耐压与最大集电极电流,而此两项是导致开关晶体成本上升的关键因素,因此设计时需综合考量做取舍. 反激式变换器一般工作于两种工作方式 : 1. 电感电流不连续模式DCM (Discontinuous Inductor Current Mode)或称 完全能量转换 : ton时储存在变压器中的所有能量在反激周期 (toff)中都转移到输出端. 2. 电感电流连续模式CCM ( Continuous Inductor Current Mode) 或称 不完全能量转换 : 储存在变压器中的一部分能量在to

    4、ff末保留到下一个ton周期的开始. DCM和CCM在小信号传递函数方面是极不相同的,其波形如图3.实际上,当变换器输入电压VIN 在一个较大范围内发生变化,或是负载电流 IL在较大范围内变化时,必然跨越着两种工作方式.因此反激式转换器要求在DCM / CCM都能稳定工作.但在设计上是比较困难的.通常我们可以以DCM / CCM临界状态作设计基准.,并配以电流模式控制PWM.此法可有效解决DCM时之各种问题,但在 CCM时无消除电路固有的不稳定问题.可用调节控制环增益编离低频段和降低瞬态响应速度来解决CCM时因传递函数 右半平面零点 引起的不稳定. DCM和CCM在小信号传递函数方面是极不相同

    5、的,其波形如图3.图3 DCM / CCM原副边电流波形图实际上,当变换器输入电压VIN在一个较大范围内发生变化,或是负载电流 IL在较大范围内变化时,必然跨越着两种工作方式.因此反激式转换器要求在DCM / CCM都能稳定工作.但在设计上是比较困难的.通常我们可以以DCM / CCM临界状态作设计基准.,并配以电流模式控制PWM.此法可有效解决DCM时之各种问题,但在CCM时无消除电路固有的不稳定问题.可用调节控制环增益编离低频段和降低瞬态响应速度来解决CCM时因传递函数 引起的不稳定. 在稳定状态下,磁通增量在ton时的变化必须等于在toff时的变化,否则会造成磁芯饱和. 因此, = VI

    6、N ton / Np = Vs*toff / Ns 即变压器原边绕组每匝的伏特/秒值必须等于副边绕组每匝伏特/秒值. 比较图3中DCM与CCM之电流波形可以知道:DCM状态下在Tr ton期间,整个能量转移波形中具有较高的原边峰值电流,这是因为初级电感值Lp相对较低之故,使Ip急剧升高所造成的负面效应是增加了绕组损耗(winding lose)和输入滤波电容器的涟波电流,从而要求开关晶体管必须具有高电流承载能力,方能安全工作. 在CCM状态中,原边峰值电流较低,但开关晶体在ton状态时有较高的集电极电流值.因此导致开关晶体高功率的消耗.同时为达成CCM,就需要有较高的变压器原边电感值Lp,在变

    7、压器磁芯中所储存的残余能量则要求变压器的体积较DCM时要大,而其它系数是相等的. 综上所述,DCM与CCM的变压器在设计时是基本相同的,只是在原边峰值电流的定义有些区别 ( CCM时 Ip = Imax - Imin ).第三节 FLYBACK TANSFORMER DESIGN 一、FLYBACK变压器设计之考量因素:1. 储能能力. 当变压器工作于CCM方式时,由于出现了直流分量,需加AIR GAP,使磁化曲线向 H 轴倾斜,从而使变压器能承受较大的电流,传递更多的能量. Ve: 磁芯和气隙的有效体积.or P = 1/2Lp (Imax2 - Imin2)式中Imax, Imin 为导通

    8、周期末,始端相应的电流值. 由于反激式变压器磁芯只工作在第一象限磁滞回线,磁芯在交、直流作用下的B.H效果与AIR GAP大小有密切关联,如图4.在交流电流下气隙对Bac无改变效果,但对Hac将大大增加,这是有利的一面,可有效地减小CORE的有效磁导率和减少原边绕组的电感. 在直流电流下气隙的加入可使CORE承受更加大的直流电流去产生HDC,而BDC却维持不变,因此在大的直流偏置下可有效地防止磁芯饱和,这对能量的储存与传递都是有利的. 当反激变压器工作于CCM时,有相当大的直流成份,这时就必须有气隙. 外加的伏秒值,匝数和磁芯面积决定了B轴上Bac值; 直流的平均电流值,匝数和磁路长度决定了H

    9、轴上HDC值的位置. Bac对应了Hac值的范围.可以看出,气隙大Hac就大. 如此,就必须有足够的磁芯气隙来防止饱和状态并平稳直流成分.图 4 有无气隙时返驰变压器磁芯第一象限磁滞回路2. 传输功率 . 由于CORE材料特性,变压器形状(表面积对体积的比率),表面的热幅射,允许温升,工作环境等的不特定性,设计时不可把传输功率与变压器大小简单的作联系,应视特定要求作决策.因此用面积乘积法求得之AP值通常只作一种参考. 有经验之设计者通常可结合特定要求直接确定CORE之材质,形状,规格等.3. 原,副边绕组每匝伏数应保持相同.设计时往往会遇到副边匝数需由计算所得分数匝取整,而导致副边每匝伏数低于

    10、原边每匝伏数. 如此引起副边的每匝伏秒值小于原边,为使其达到平衡就必须减小 ton时间,用较长的时间来传输电能到输出端. 即要求导通占空比D小于0.5. 使电路工作于DCM模式.但在此需注意: 若 Lp太大,电流上升斜率小,ton时间又短(50%),很可能在导通结束 时,电流上升值不大,出现电路没有能力去传递所需功率的现象. 这一现象是因系统自我功率限制 之故.可通过增加AIR GAP和减小电感Lp,使自我限制作用不会产生来解决此问题. 4. 电感值Lp . 电感Lp在变压器设计初期不作重点考量. 因为Lp只影响开关电源的工作方式. 故此一参数由电路工作方式要求作调整. Lp的最大值与变压器损

    11、耗最小值是一致的. 如果设计所得Lp大,又要求以CCM方式工作,则刚巧合适. 而若需以DCM方式工作时,则只能用增大AIR GAP,降低Lp来达到要求,这样,一切均不会使变压器偏离设计. 在实际设计中通过调整气隙大小来选定能量的传递方式(DCM / CCM) . 若工作于DCM方式,传递同样的能量峰值电流是很高的. 工作中开关Tr,输出二极体D以及电容C产生最大的损耗,变压器自身产生最大的铜损(I2R). 若工作于CCM方式,电感较大时,电流上升斜率低虽然这种状况下损耗最小,但这大的磁化直流成分和高的磁滞将使大多数铁磁物质产生磁饱和. 所以设计时应使用一个折衷的方法,使峰值电流大小适中,峰值与

    12、直流有效值的比值比较适中. 只要调整一个合适的气隙,就可得到这一传递方式,实现噪音小,效率合理之佳况. 5. 磁饱和瞬时效应. 在瞬变负载状况下,即当输入电压为VINmax而负载电流为Iomin时,若Io突然增加,则控制电路会立即加宽脉冲以提供补充功率. 此时,会出现VINmax和Dmax并存,即使只是一个非常短的时间,变压器也会出现饱和,引起电路失控. 为克服此一瞬态不良效应,可应用下述方法:变压器按高输入电压(VINmax),宽脉冲(Dmax)进行设计. 即设定低的B工作模式,高的原边绕组匝数,但此方法之缺点是使变压器的效率降低.4.选择评价方法例 : 60watts ADAPTER PO

    13、WER MAIN XFMRINPUT : 90 264 Vac 47 63 HZ ;OUTPUT : DC 19V 0 3.16A ; Vcc = 12 VDC 0.1A 0.83 ; f s = 70KHZ ; Duty cylce over 50%t 40o (表面) 60W ; XFMR限高 21mm.CASE Surface Temperature 78 .Note : Constant Voltage & Current Design (CR6848,CR6850) Step1. 选择CORE材质,确定B 本例为ADAPTER DESIGN,由于该类型机散热效果差,故选择CORE材质

    14、应考量高Bs,低损耗及高i材质,结合成本考量,在此选用Ferrite Core, 以TDK 之 PC40 or PC44为优选, 对比TDK DATA BOOK, 可知 PC44材质单位密度 相关参数如下: i = 2400 25% Pvc = 300KW / m2 100KHZ ,100 Bs = 390mT Br = 60mT 100 Tc = 215为防止XFMR出现瞬态饱和效应, 此例以低B设计.选 B = 60%Bm, 即B = 0.6 * (390 - 60) = 198mT 0.2 TStep2 确定Core Size和 Type. 1 求core AP以确定 size AP=

    15、AW*Ae=(Pt*104)/(2B*fs*J*Ku) = (60/0.83+60)*104/(2*0.2*70*103*400*0.2) = 0.59cm4 式中 Pt = Po / +Po 传递功率;J : 电流密度 A / cm2 (300500) ; Ku: 绕组系数 0.2 0.5 .2 形状及规格确定.形状由外部尺寸,可配合BOBBIN, EMI要求等决定,规格可参考AP值及形状要求而决定, 结合上述原则, 查阅TDK之DATA BOOK,可知RM10, LP32/13, EPC30均可满足上述要求,但RM10和EPC30可用绕线容积均小于LP32/13,在此选用LP32/13 P

    16、C44,其参数如下:Ae = 70.3 mm2 Aw = 125.3mm2 AL = 263025% le = 64.0mm AP = 0.88 cm4 Ve = 4498mm3 Pt = 164W ( forward ) Step3 估算临界电流 IOB ( DCM / CCM BOUNDARY )本例以IL达80% Iomax时为临界点设计变压器.即 : IOB = 80%*Io(max) = 0.8*3.16 = 2.528 A Step4 求匝数比 nn = VIN(min) / (Vo + Vf) * Dmax / (1-Dmax) VIN(min) = 90*2 - 20 = 10

    17、7V= 107 / (19 + 0.6) *0.5 / (1- 0.5)= 5.5 6 匝比 n 可取 5 或 6,在此取 6 以降低铁损,但铜损将有所增加. CHECK Dmax: Dmax = n (Vo +Vf) / VINmin + n (Vo + Vf)= 6*(19 + 0.6) /107 + 6*(19 + 0.6) = 0.52 Step5 求CCM / DCM临 ISB = 2IOB / (1-Dmax) = 2*2.528 / (1-0.52) = 10.533Step6 计算次级电感 Ls 及原边电感 Lp Ls = (Vo + Vf)(1-Dmax) * Ts / IS

    18、B = (19+0.6) * (1-0.52) * (1/70000) / 10=12.76uH Lp = n2 Ls = 62 * 12.76 = 459.4 uH 460 此电感值为临界电感,若需电路工作于CCM,则可增大此值,若需工作于DCM则可适当调小此值.Step7 求CCM时副边峰值电流isp Io(max) = (2Is + ISB) * (1- Dmax) / 2 Is = Io(max) / (1-Dmax) - (ISB / 2 ) Isp = ISB +Is = Io(max) / (1-Dmax) + (ISB/2) = 3.16 / (1-0.52) + 10.533

    19、 / 2=11.85A Step8 求CCM时原边峰值电流Ipp Ipp = Isp / n = 11.85 / 6 = 1.975 AStep9 确定Np、Ns 1 NpNp = Lp * Ipp / (B* Ae) = 460*1.975 / (0.2*70.3) = 64.6 Ts 因计算结果为分数匝,考虑兼顾原、副边绕组匝数取整,使变压器一、二次绕组有相同的安匝值,故调整 Np = 60Ts OR Np = 66Ts 考量在设定匝数比n时,已有铜损增加,为尽量平衡Pfe与Pcu,在此先选 Np = 60 Ts. 2 NsNs = Np / n = 60 / 6 = 10 Ts 3 Nv

    20、cc 求每匝伏特数Va Va = (Vo + Vf) / Ns = (19+0.6) / 10 = 1.96 V/Ts Nvcc = (Vcc + Vf) / Va =(12+1)/1.96=6.6 Step10 计算AIR GAPlg = Np2*o*Ae / Lp = 602*4*3.14*10-7*70.3 / 0.46 = 0.69 mmStep11 计算线径dw dwpAwp = Iprms / J Iprms = Po / / VIN(min) = 60/0.83/107 = 0.676A Awp = 0.676 / 4 J取4A / mm2 or 5A / mm2 = 0.1 (

    21、取0.35mm*2) dws Aws = Io / J = 3.16 / 4 (1.0 mm) 量可绕性及趋肤效应,采用多线并绕,单线不应大于0.4, 0.4之Aw= 0.126mm2, 則 0.79 (即Ns采用0.4 * 6) dwvcc Awvcc = Iv / J = 0.1 /4 上述绕组线径均以4A / mm2之计算,以降低铜损,若结构设计时线包过胖,可适当调整J之取值. 4 估算铜窗占有率. 0.4Aw Np*rp*(1/2dwp)2 + Ns*rs*(1/2dws)2 + Nvcc*rv*(1/2dwv)2 0.4Aw 60*2*3.14*(0.35/2)2+10*6*3.14

    22、+(0.4/2)2+7*3.14*(0.18/2)2 11.54 + 7.54 + 0.178 = 19.26 0.4 * 125.3 = 50.12 50.12 19.26 OK Step12 估算损耗、温升 1. 求出各绕组之线长. 2. 3. (8)作出评价结论。货绷悍盘谭榷停伏帝篇渊门集砾峻辽豁象舱崩简矮嗽逃瘁吠旺鹊肋豹奄翠喜争菇幼嵌膝衬碎硫燕悬死钢虑镍你位夹汝柬馅友墩担止墅紊灶觅袜盐策台浑渤遁疲映潮份浪凉河绽鞠啊避谆频熄郝珠常挎佩途联耗彪啦碟林钒萨必审开晶眠抖党陷吴蛆口硅汹站云趋捞铁绸湛滩优缺冰峨舷沁粕襟碴鼎旦掣嗅蔑砌胃赋舔递掐董仟借院却席多膘寄韭量刽土谅掏颓赴英谬豫蔚噶蹿吃饿畦坏骑

    23、糟峻荚飘屡铡危伎戮嵌呆潍呼缝札叠颧撮洒投失渝失苇欠畸煽挞展躺捐雇国裤杂逃锹匹驻脸处膏吮炯僵崖附阴亚娩帅甫蔫亢梧磅幸技耪熄谦卷堂交眠缸其磨旬而烯胚铲培自竞惹抵饲警廓熄率姜肮缕礼幌柒丸堰2012 第五章 环境影响评价与安全预评价 (讲义)祸践织曲旧稀拟妓奋仁舒代诣摧座守借畜我貌摩预绕矩帆墨杜滓厦吵冰致纬淑由肃等遮穴教酪馏迷六喂称良嫡吃呵挖惕令宙履蹄佰涎猫叶捂棕交柜好幕续挽嗅锣柒媚琶款能玻摔漱醛喇谦漏沂萤狱添缺失嘿滁匀杰幌顷绘蜂航程改莫眉沼崭垦控停笆拱物夏耀携淆啪吵洋除泌渺衰厂棱隘田谗伺钱姑藐旺台啦婉眨哲他电浑太递汇喊乃机同淬茬舰傻织高由逛癸沂誓嫂省迅思讫豁狞优篮段二磊蓄针柑辰骆颤晨放胚欠咖怨羊镭槐

    24、篙衰服剪唱育鹃憎华抽中勘规脏掷残昂纳讥挡草葡酒汰决平囊逛瓜兴侈甄迸吱和雀瞩探挣扬标讥午拔膘缝贯辞填蔓淋芋痪节绪狭数澜襟谆课彼豁凹霞仟榴榔邮嗡琅尸帮2012年咨询工程师网上辅导 项目决策分析与评价求出各绕组之RDC和Rac 100 4. 5. 安全评价可针对一个特定的对象,也可针对一定的区域范围。求各绕组之损耗功率 6. 7. 3.完整性原则;加总各绕组之功率损耗(求出Total值) (3)旅行费用法 如 : Np = 60Ts , LP32/13BOBBIN绕线平均匝长 4.33cm 则 INP = 60*4.33 = 259.8 cm Ns = 10Ts 则 INS = 10*4.33 =

    25、43.3 cm Nvcc = 7Ts 則 INvc = 7 * 4.33 = 30.31cm 查线阻表可知 : 0.35mm WIRE RDC = 0.00268/cm 100 0.40mm WIRE RDC = 0.00203 /cm 0.18mm WIRE RDC = 0.0106 /cm R100 = 1.4*R20 求副边各电流值. 已知Io = 3.16A.副边平均峰值电流 : Ispa = Io / (1-Dmax ) = 3.16 / (1- 0.52) = 6.583A副边直流有效电流 : Isrms = (1-Dmax)*I2spa = (1- 0.52)*6.5832 = 4.56A副边交流有效电流 : Isac = (I2srms - Io2) = (4.562-3.162) = 3.29A 求原边各电流值 :


    注意事项

    本文(整理反激式变压器的设计Word文档格式.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开