欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    半导体的生产工艺流程Word文档下载推荐.docx

    • 资源ID:5267633       资源大小:29.92KB        全文页数:14页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    半导体的生产工艺流程Word文档下载推荐.docx

    1、为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人!8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气 (98%),吹干晶圆的氮气甚至要求99.8%以上的高纯氮! 以上八点讲明是最差不多的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建筑与维护费用!二、晶圆制作 硅晶圆 (silicon wafer) 是一切集成电路芯片的制作母材。既然讲到晶体,显然是通过纯炼与结晶的程序。目前晶体化的制程,大多是采柴可拉斯基(Czycrasky) 拉晶法 (CZ法)。拉晶时,将特

    2、定晶向 (orientation) 的晶种 (seed),浸入过饱和的纯硅熔汤 (Melt) 中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒 (ingot)。晶棒的阻值假如太低,代表其中导电杂质 (impurity dopant) 太多,还需通过FZ法 (floating-zone) 的再结晶 (re-crystallization),将杂质逐出,提高纯度与阻值。辅拉出的晶棒,外缘像椰子树干般,外径不甚一致,需予以机械加工修边,然后以X光绕射法,定出主切面 (primary flat) 的所在,磨出该平面;再以内刃环锯,削下一片片的硅晶圆。最后通过粗磨 (la

    3、pping)、化学蚀平 (chemical etching) 与拋光 (polishing) 等程序,得出具表面粗糙度在0.3微米以下拋光面之晶圆。(至于晶圆厚度,与其外径有关。) 刚才题及的晶向,与硅晶体的原子结构有关。硅晶体结构是所谓钻石结构(diamond-structure),系由两组面心结构 (FCC),相距 (1/4,1/4,1/4) 晶格常数 (lattice constant;即立方晶格边长) 叠合而成。我们依米勒指针法 (Miller index),可定义出诸如 :100、111、110 等晶面。因此晶圆也因之有 100、111、110等之分野。有关常用硅晶圆之切边方向等信息

    4、,请参考图2-2。 现今半导体业所使用之硅晶圆,大多以 100 硅晶圆为主。其可依导电杂质之种类,再分为p型 (周期表III族) 与n型 (周期表V族)。由于硅晶外貌完全相同,晶圆制造厂因此在制作过程中,加工了供辨识的记号:亦即以是否有次要切面 (secondary flat) 来分辨。该次切面与主切面垂直,p型晶圆有之,而n型则阙如。100硅晶圆循平行或垂直主切面方向而断裂整齐的特性,因此专门容易切成矩形碎块,这是早期晶圆切割时,可用刮晶机 (scriber) 的缘故 (它并无真正切断芯片,而只在表面刮出裂痕,再加以外力而整齐断开之。)事实上,硅晶的自然断裂面是111,因此尽管得到矩形的碎芯

    5、片,但断裂面却不与100晶面垂直!以下是订购硅晶圆时,所需讲明的规格:项目 讲明 晶面 100、111、110 1o 外径(吋) 3 4 5 6 厚度(微米) 300450 450600 550650 600750(25) 杂质 p型、n型 阻值(-cm) 0.01 (低阻值) 100 (高阻值) 制作方式 CZ、FZ (高阻值) 拋光面 单面、双面 平坦度(埃) 300 3,000 三、半导体制程设备 半导体制程概分为三类:(1)薄膜成长,(2)微影罩幕,(3)蚀刻成型。设备也跟着分为四类:(a)高温炉管,(b)微影机台,(c)化学清洗蚀刻台,(d)电浆真空腔室。其中(a)(c)机台依序对应

    6、(1)(3)制程,而新近进展的第(d)项机台,则分不应用于制程(1)与(3)。由于坊间不乏介绍半导体制程及设备的中文书籍,故本文不刻意锦上添花,谨就笔者认为较有味的观点,描绘一二!(一)氧化(炉)(Oxidation) 对硅半导体而言,只要在高于或等于1050的炉管中,如图2-3所示,通入氧气或水汽,自然能够将硅晶的表面予以氧化,生长所谓干氧层(dryz/gate oxide)或湿氧层(wet /field oxide),当作电子组件电性绝缘或制程掩膜之用。氧化是半导体制程中,最洁净、单纯的一种;这也是硅晶材料能够取得优势的特性之一(他种半导体,如砷化镓 GaAs,便无法用此法成长绝缘层,因为

    7、在550左右,砷化镓已解离释放出砷!)硅氧化层耐得住850 1050的后续制程环境,系因为该氧化层是在前述更高的温度成长;只是每生长出1 微米厚的氧化层,硅晶表面也要消耗掉0.44微米的厚度。以下是氧化制程的一些要点:(1)氧化层的成长速率不是一直维持恒定的趋势,制程时刻与成长厚度之重复性是较为重要之考量。(2)后长的氧化层会穿透先前长的氧化层而堆积于上;换言之,氧化所需之氧或水汽,势必也要穿透先前成长的氧化层到硅质层。故要生长更厚的氧化层,遇到的阻碍也越大。一般而言,专门少成长2微米厚以上之氧化层。(3)干氧层要紧用于制作金氧半(MOS)晶体管的载子信道(channel);而湿氧层则用于其它

    8、较不严格讲究的电性阻绝或制程罩幕(masking)。前者厚度远小于后者,1000 1500埃已然足够。(4)对不同晶面走向的晶圆而言,氧化速率有异:通常在相同成长温度、条件、及时刻下,111厚度110厚度100厚度。(5)导电性佳的硅晶氧化速率较快。(6)适度加入氯化氢(HCl)氧化层质地较佳;但因容易腐蚀管路,已渐少用。(7)氧化层厚度的量测,可分破坏性与非破坏性两类。前者是在光阻定义阻绝下,泡入缓冲过的氢氟酸(BOE,Buffered Oxide Etch,系 HF与NH4F以1:6的比例混合而成的腐蚀剂)将显露出来的氧化层去除,露出不沾水的硅晶表面,然后去掉光阻,利用表面深浅量测仪(su

    9、rface profiler or alpha step),得到有无氧化层之高度差,即其厚度。(8)非破坏性的测厚法,以椭偏仪 (ellipsometer) 或是毫微仪(nano-spec)最为普遍及准确,前者能同时输出折射率(refractive index;用以评估薄膜品质之好坏)及起始厚度b与跳阶厚度a (总厚度 t = ma + b),实际厚度 (需确定m之整数值),仍需与制程经验配合以判读之。后者则还必须事先明白折射率来反推厚度值。(9)不同厚度的氧化层会显现不同的颜色,且有2000埃左右厚度即循环一次的特性。有经验者也可单凭颜色而推断出大约的氧化层厚度。只是若超过1.5微米以上的厚

    10、度时,氧化层颜色便渐不明显。(二)扩散(炉) (diffusion) 1、扩散搀杂 半导体材料可搀杂n型或p型导电杂质来调变阻值,却不阻碍其机械物理性质的特点,是进一步制造出p-n接合面(p-n junction)、二极管(diode)、晶体管(transistor)、以至于大千婆娑之集成电路(IC)世界之基础。而扩散是达成导电杂质搀染的初期重要制程。众所周知,扩散即大自然之输送现象 (transport phenomena);质量传输(mass transfer)、热传递(heat transfer)、与动量传输 (momentum transfer;即摩擦拖曳) 皆是事实上然的三种已知现象

    11、。本杂质扩散即属于质量传输之一种,唯需要在850oC以上的高温环境下,效应才够明显。由因此扩散现象,杂质浓度C (concentration;每单位体积具有多少数目的导电杂质或载子)服从扩散方程式如下:这是一条拋物线型偏微分方程式,同时与扩散时刻t及扩散深度x有关。换言之,在某扩散瞬间 (t固定),杂质浓度会由最高浓度的表面位置,往深度方向作递减变化,而形成一随深度x变化的浓度曲线;另一方面,这条浓度曲线,却又随着扩散时刻之增加而改变样式,往时刻无穷大时,平坦一致的扩散浓度分布前进!既然是扩散微分方程式,不同的边界条件(boundary conditions)施予,会产生不同之浓度分布外形。固

    12、定表面浓度 (constant surface concentration) 与固定表面搀杂量 (constant surface dosage),是两种常被讨论的具有解析精确解的扩散边界条件(参见图2-4): 2、前扩散 (pre-deposition) 第一种定浓度边界条件的浓度解析解是所谓的互补误差函数(complementary error function),其对应之扩散步骤称为前扩散,即我们一般了解之扩散制程;当高温炉管升至工作温度后,把待扩散晶圆推入炉中,然后开始释放扩散源 (p型扩散源通常是固体呈晶圆状之氮化硼【boron-nitride】芯片,n型则为液态POCl3之加热蒸气

    13、) 进行扩散。其浓度剖面外形之特征是杂质集中在表面,表面浓度最高,并随深度迅速减低,或是讲表面浓度梯度 (gradient) 值极高。3、后驱入 (post drive-in) 第二种定搀杂量的边界条件,具有高斯分布 (Gaussian distribution) 的浓度解析解。对应之扩散处理程序叫做后驱入,即一般之高温退火程序;差不多上只维持炉管的驱入工作温度,扩散源却不再释放。或问曰:定搀杂量的起始边界条件自何而来?答案是前扩散制程之结果;盖先前前扩散制作出之杂质浓度集中于表面,可近似一定搀杂量的边界条件也!至于什么缘故扩散要分成此二类步骤,因此不是为了投数学解析之所好,而是因应阻值调变之

    14、需求。原来前扩散的杂质植入剂量专门快达到饱和,即使拉长前扩散的时刻,也无法大幅增加杂质植入剂量,换言之,电性上之电阻率 (resistivity) 特性专门快趋稳定;但后驱入使表面浓度及梯度减低(因杂质由表面往深处扩散),却又营造出再一次前扩散来增加杂质植入剂量的机会。因此,借着多次反复的前扩散与后驱入,既能调变电性上之电阻率特性,又可改变杂质电阻之有效截面积,故依大伙儿熟知之电阻公式 ; 其中 是电阻长度可设计出所需导电区域之扩散程序。4、扩散之其它要点,简述如下:(1)扩散制程有批次制作、成本低廉的好处,但在扩散区域之边缘所在,有侧向扩散的误差,故限制其在次微米 (sub-micron)

    15、制程上之应用。(2)扩散之后的阻值量测,通常以四探针法(four-point probe method)行之,示意参见图2-5。目前市面已有多种商用机台可供选购。 (3)扩散所需之图形定义(pattern)及遮掩(masking),通常以氧化层(oxide)充之,以抵挡高温之环境。一微米厚之氧化层,已足敷一般扩散制程之所需。(二)微影(Photo-Lithography) 1、正负光阻 微影光蚀刻术起源于照相制版的技术。自1970年起,才大量使用于半导体制程之图形转写复制。原理即利用对紫外线敏感之聚合物,或所谓光阻(photo-resist)之受曝照与否,来定义该光阻在显影液(develope

    16、r)中是否被蚀除,而最终留下与遮掩罩幕,即光罩(mask)相同或明暗互补之图形;相同者称之正光阻(positive resist),明暗互补者称之负光阻(negative resist),如图2-6所示。一般而言,正光阻,如AZ-1350、AZ-5214、FD-6400L等,其分辨率及边缘垂直度均佳,但易变质,储存期限也较短 (约半年到一年之间),常用于学术或研发单位;而负光阻之边缘垂直度较差,但可储存较久,常为半导体业界所使用。2、光罩 前段述及的光罩制作,是微影之关键技术。其制作方式经几十年之演进,已由分辨率差的缩影机 (由数百倍大的红胶纸【rubby-lith】图样缩影) 技术,改良为直

    17、接以计算机辅助设计制造(CAD/CAM)软件操纵的雷射束(laser-beam)或电子束(E-beam)书写机,在具光阻之石英玻璃板上进行书写 (曝光),分辨率 (最小线宽) 也改进到微米的等级。由于激光打印机的分辨率越来越好,以后某些线宽较粗的光罩可望直接以打印机出图。举例而言,3386dpi的出图机,最小线宽约为七微米。3、对准机 / 步进机 在学术或研发单位中之电路布局较为简易,一套电路布局可全部写在一片光罩中,或甚至多重复制。加上使用之硅晶圆尺寸较小,配合使用之光罩本来就不大。因此搭配使用之硅晶圆曝光机台为一般的光罩对准机(mask aligner,如图2-7)。换言之,一片晶圆只需一

    18、次对准曝光,便可进行之后的显影及烤干程序。但在业界中,使用的晶圆大得多,我们不可能任意造出7吋或9吋大小的光罩来进行对准曝光:一来电子束书写机在制备如此大的光罩时,会耗损巨量的时刻,极不划算;二来,大面积光罩进行光蚀刻曝光前与晶圆之对准,要因应大面积周密定位及防震等问题,极为棘手!因此工业界多采纳步进机(stepper)进行对准曝光;也确实是讲,即使晶圆大到6或8吋,但光罩大小依旧小小的12吋见方,一则光罩制备快速,二则小面积对准的问题也比较少;只是要曝满整片晶圆,要花上数十次对准曝光移位的重复动作。但即便如此,因每次对准曝光移位仅费时1秒左右,故一片晶圆的总曝光时刻仍操纵在1分钟以内,而保持

    19、了工厂的高投片率 (high through-put;即单位时刻内完成制作之硅芯片数。) 图2-7 双面对准曝光对准系统(国科会北区微机电系统研究中心)。4、光阻涂布 晶圆上微米厚度等级的光阻,是采纳旋转离心(spin-coating)的方式涂布上去。光阻涂布机如图2-8所示。其典型程序包括:(1)晶圆表面前处理 (pre-baking):即在150C下烘烤一段时刻。若表面无氧化层,要另外先上助粘剂 (primer),如HMDS,再降回室温。换言之,芯片表面在涂敷光阻前要确保是亲水性(hydrophilic)。(2)送晶圆上真空吸附的转台,注入(dispensing)光阻,开始由低转速甩出多余

    20、的光阻并均布之,接着以转速数千rpm,减薄光阻至所需厚度。(3)将晶圆表层光阻稍事烤干定型,防止沾粘。但不可过干过硬,而阻碍后续的曝光显影。一般光阻涂布机的涂布结果是厚度不均。尤其在晶圆边缘部份,可能厚达其它较均匀部份的光阻3倍以上。另外,为了确保光阻全然涂布到整片晶圆,通常注入光阻的剂量,是真正涂布粘着在晶圆上之数十甚至数百倍,极其惋惜;因为甩到晶圆外的光阻中有机溶剂迅速挥发逸散,成份大变,不能回收再使用。5、厚光阻 德国Karl-Suss公司开发了一种新型的光阻涂布机,称为GYRSET?,如图2-9所示,其卖点在于强调可减少一半的光阻用量,且得出更均厚的光阻分布。其原理极为单纯:只是在真空

    21、转台上加装了跟着同步旋转的盖子。如此一来,等于强迫晶圆与盖子之间的空气跟着旋转,那么光阻上便无高转速差的粘性旋转拖曳作用。故光阻在被涂布时,其与周遭流体之相对运动并不明显,只是离心的彻体力效果,使光阻稳定地、且是呈同心圆状地向外涂布。 依照实际使用显示,GYRSET?只需一般涂布机的55%光阻用量。另外,其也可应用于厚光阻之涂布 (厚度自数微米至数百微米不等)。受涂基板也可由晶圆改为任意的工作外型,而可不能造成边缘一大部份面积厚度不均的花花外貌。注 厚光阻是新近进展出来,供微机电研究使用的材料,如IBM的SU-8系列光阻,厚度由数微米至100微米不等,以GYRSET?涂布后,通过严格的烘干程序

    22、,再以紫外线或准分子雷射 (excimer laser) 进行曝光显影后,所得到较深遂的凹状图案,可供进一步周密电铸 (electro-forming) 的金属微结构成长填塞。这种加工程序又称为仿LIGA制程 (poor mans LIGA),即异步X光之深刻模造术。(三)蚀刻(Etching) 蚀刻的机制,按发生顺序可概分为反应物接近表面、表面氧化、表面反应、生成物离开表面等过程。因此整个蚀刻,包含反应物接近、生成物离开的扩散效应,以及化学反应两部份。整个蚀刻的时刻,等因此扩散与化学反应两部份所费时刻的总和。二者之中孰者费时较长,整个蚀刻之快慢也卡在该者,故有所谓reaction limit

    23、ed与diffusion limited两类蚀刻之分。1、湿蚀刻 最普遍、也是设备成本最低的蚀刻方法,其设备如图2-10所示。其阻碍被蚀刻物之蚀刻速率 (etching rate) 的因素有三:蚀刻液浓度、蚀刻液温度、及搅拌 (stirring) 之有无。定性而言,增加蚀刻温度与加入搅拌,均能有效提高蚀刻速率;但浓度之阻碍则较不明确。举例来讲,以49%的HF蚀刻SiO2,因此比BOE (Buffered-Oxide- Etch;HF:NH4F =1:6) 快的多;但40%的KOH蚀刻Si的速率却比20%KOH慢! 湿蚀刻的配方选用是一项化学的专业,关于一般不是这方面的研究人员,必须向该化学专业

    24、的同侪请教。一个选用湿蚀刻配方的重要观念是选择性(selectivity),意指进行蚀刻时,对被蚀物去除速度与连带对其他材质 (如蚀刻掩膜;etching mask, 或承载被加工薄膜之基板;substrate ) 的腐蚀速度之比值。一个具有高选择性的蚀刻系统,应该只对被加工薄膜有腐蚀作用,而不伤及一旁之蚀刻掩膜或其下的基板材料。 (1)等向性蚀刻 (isotropic etching) 大部份的湿蚀刻液均是等向性,换言之,对蚀刻接触点之任何方向腐蚀速度并无明显差异。故一旦定义好蚀刻掩膜的图案,暴露出来的区域,便是往下腐蚀的所在;只要蚀刻配方具高选择性,便应当止于所该止之深度。然而有鉴于任何被

    25、蚀薄膜皆有其厚度,当其被蚀出某深度时,蚀刻掩膜图案边缘的部位渐与蚀刻液接触,故蚀刻液也开始对蚀刻掩膜图案边缘的底部,进行蚀掏,这确实是所谓的下切或侧向侵蚀现象 (undercut)。该现象造成的图案侧向误差与被蚀薄膜厚度同数量级,换言之,湿蚀刻技术因之而无法应用在类似次微米线宽的周密制程技术!(2)非等向性蚀刻 (anisotropic etching) 先前题到之湿蚀刻选择性观念,是以不同材料之受蚀快慢程度来讲明。然而自1970年代起,在诸如Journal of Electro-Chemical Society等期刊中,发表了许多有关碱性或有机溶液腐蚀单晶硅的文章,其特点是不同的硅晶面腐蚀速

    26、率相差极大,尤其是方向,足足比或是方向的腐蚀速率小一到两个数量级!因此,腐蚀速率最慢的晶面,往往便是腐蚀后留下的特定面。这部份将在体型微细加工时再详述。2、干蚀刻 干蚀刻是一类较新型,但迅速为半导体工业所采纳的技术。其利用电浆 (plasma) 来进行半导体薄膜材料的蚀刻加工。其中电浆必须在真空度约10至0.001 Torr 的环境下,才有可能被激发出来;而干蚀刻采纳的气体,或轰击质量颇巨,或化学活性极高,均能达成蚀刻的目的。干蚀刻差不多上包括离子轰击(ion-bombardment)与化学反应(chemical reaction) 两部份蚀刻机制。偏离子轰击效应者使用氩气(argon),加工

    27、出来之边缘侧向侵蚀现象极微。而偏化学反应效应者则采氟系或氯系气体(如四氟化碳CF4),经激发出来的电浆,即带有氟或氯之离子团,可快速与芯片表面材质反应。干蚀刻法可直接利用光阻作蚀刻之阻绝遮幕,不必另行成长阻绝遮幕之半导体材料。而其最重要的优点,能兼顾边缘侧向侵蚀现象极微与高蚀刻率两种优点,换言之,本技术中所谓活性离子蚀刻(reactive ion etch;RIE) 已足敷次微米线宽制程技术的要求,而正被大量使用中。(四)离子植入 (Ion Implantation) 在扩散制程的末尾描述中,曾题及扩散区域之边缘所在,有侧向扩散的误差,故限制其在次微米制程上之应用。但诚如干蚀法补足湿蚀法在次微

    28、米制程能力不足一样,此地另有离子植入法,来进行图案更精细,浓度更为稀少精准的杂值搀入。离子植入法是将III族或IV族之杂质,以离子的型式,经加速后冲击进入晶圆表面,通过一段距离后,大部份停于离晶圆表面0.1微米左右之深度 (视加速能量而定),故最高浓度的地点,不似热扩散法在表面上。只是因为深度专门浅,一般依旧简单认定大部份离子是搀杂在表面上,然后进一步利用驱入(drive-in)来调整浓度分布,并对离子撞击过的区域,进行结构之修补。差不多上,其为一低温制程,故可直接用光阻来定义植入的区域。(五)化学气相沉积 (Chemical Vapor Deposition;CVD) 到目前为止,只谈到以高温炉管来进行二氧化硅层之成长。至于其它如多晶硅 (poly-silicon)、氮化硅 (silicon-nitride)、钨或铜金属等


    注意事项

    本文(半导体的生产工艺流程Word文档下载推荐.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开