欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    数值分析课程第五版课后习题答案(李庆扬等).doc

    • 资源ID:588323       资源大小:4.10MB        全文页数:97页
    • 资源格式: DOC        下载积分:1金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要1金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数值分析课程第五版课后习题答案(李庆扬等).doc

    1、第一章 绪论(12)1、设,x的相对误差为,求的误差。解设为x的近似值,则有相对误差为,绝对误差为,从而的误差为,相对误差为。2、设x的相对误差为2%,求的相对误差。解设为x的近似值,则有相对误差为,绝对误差为,从而的误差为,相对误差为。3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:,。解有5位有效数字;有2位有效数字;有4位有效数字;有5位有效数字;有2位有效数字。4、利用公式(3.3)求下列各近似值的误差限,其中均为第3题所给的数。(1);解;(2);解;(3)。解。5、计算球体积要使相对误差限为1%,问度量半径R允许的相对误差是多少?

    2、解由可知,从而,故。6、设,按递推公式计算到,若取(五位有效数字,)试问计算将有多大误差?解令表示的近似值,则,并且由,可知,即,从而,而,所以。7、求方程的两个根,使它至少具有四位有效数字()解由与(五位有效数字)可知,(五位有效数字)。而,只有两位有效数字,不符合题意。但是。8、当N充分大时,怎样求?解因为,当N充分大时为两个相近数相减,设,则,从而,因此。9、正方形的边长大约为100cm,应怎样测量才能使其面积误差不超过1?解由可知,若要求,则,即边长应满足。10、设,假定g是准确的,而对t的测量有秒的误差,证明当t增加时S的绝对误差增加,而相对误差却减少。证明因为,所以得证。11、序列

    3、满足递推关系,若(三位有效数字),计算到时误差有多大?这个计算过程稳定吗?解设为的近似值,则由与可知,即,从而,因此计算过程不稳定。12、计算,取,利用下列公式计算,哪一个得到的结果最好?,。解因为,所以对于,有一位有效数字;对于,没有有效数字;对于,有一位有效数字;对于,没有有效数字。13、,求的值。若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?解因为(六位有效数字),所以,。14、试用消元法解方程组,假定只有三位数计算,问结果是否可靠?解精确解为。当使用三位数运算时,得到,结果可靠。15、已知三角形面积,其中c为弧度,且测量a,b,c的误差分别为,

    4、证明面积的误差满足。解因为,所以。第二章 插值法(40-42)1、根据(2.2)定义的范德蒙行列式,令,证明是n次多项式,它的根是,且。证明由可得求证。2、当时,求的二次插值多项式。解。3、给出的数值表用线性插值及二次插值计算的近似值。X0.40.50.60.70.8-0.916291-0.693147-0.510826-0.357765-0.223144解若取,则,则,从而。若取,则,则,从而。4、给出的函数表,步长,若函数具有5位有效数字,研究用线性插值求近似值时的总误差界。解设插值节点为,对应的值为,函数表值为,则由题意可知,近似线性插值多项式为,所以总误差为,从而。5、设,求。解。令,

    5、则,从而极值点可能为,又因为,显然,所以。6、设为互异节点,求证:1);2);解1)因为左侧是的n阶拉格朗日多项式,所以求证成立。2)设,则左侧是的n阶拉格朗日多项式,令,即得求证。7、设且,求证。解见补充题3,其中取即得。8、在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函数表的步长h应取多少?解由题意可知,设x使用节点,进行二次插值,则插值余项为,令,则,从而的极值点为,故,而,要使其不超过,则有,即。9、若,求及。解。10、如果是m次多项式,记,证明的k阶差分是次多项式,并且(l为正整数)。证明对k使用数学归纳法可证。11、证明。证明。12、证明。证明因为,

    6、故得证。13、证明:。证明。14、若有n个不同实根,证明。证明由题意可设,故,再由差商的性质1和3可知:,从而得证。15、证明n阶均差有下列性质:1)若,则;2)若,则。证明1)。2)。16、,求,。解,。17、证明两点三次埃尔米特插值余项是,并由此求出分段三次埃尔米特插值的误差限。解见P30与P33,误差限为。18、XXXXXXXXXX19、求一个次数不高于4次的多项式,使它满足,。解设,则,再由,可得:解得。从而。20、设,把分为n等分,试构造一个台阶形的零次分段插值函数,并证明当时,在上一致收敛到。解令。21、设,在上取,按等距节点求分段线性插值函数,计算各节点中点处的与的值,并估计误差

    7、。解由题意可知,从而当时,。22、求在上的分段线性插值函数,并估计误差。解设将划分为长度为h的小区间,则当,时,从而误差为,故。23、求在上的分段埃尔米特插值,并估计误差。解设将划分为长度为h的小区间,则当,时,从而误差为,故。24、给定数据表如下:0.250.300.390.450.530.50000.54770.62450.67080.7280试求三次样条函数,并满足条件:1);2)。解由,及(8.10)式可知,由(8.11)式可知,。从而1)矩阵形式为:,解得,从而。2)此为自然边界条件,故;,矩阵形式为:,可以解得,从而。25、若,是三次样条函数,证明1);2)若,式中为插值节点,且则

    8、。解1)。2)由题意可知,所以。补充题:1、令,写出的一次插值多项式,并估计插值余项。解由,可知,余项为,故。2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。解由插值余项定理,有,从而。3、设在内有二阶连续导数,求证:。证因为是以a,b为插值节点的的线性插值多项式,利用插值多项式的余项定理,得到:,从而。4、设,求差商,和。解因为,所以,。5、给定数据表:,1246741011求4次牛顿插值多项式,并写出插值余项。解一阶差商二阶差商三阶差商四阶差商1421-34061710由差商表可得4次牛顿插值多项式为:,插值余项为。6、如下表给定函数:,0123436111827试计算

    9、出此列表函数的差分表,并利用牛顿向前插值公式给出它的插值多项式。解构造差分表:03320016520211723189427由差分表可得插值多项式为:。第三章 函数逼近与计算(80-82)1、(a)利用区间变换推出区间为的伯恩斯坦多项式;(b)对在上求1次和3次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做出比较。解(a)令,则,从而伯恩斯坦多项式为,其中。(b)令,则,从而伯恩斯坦多项式为,其中。;。2、求证:(a)当时,;(b)当时,。证明(a)由及可知,而,从而得证。(b)当时,。3、在次数不超过6的多项式中,求在的最佳一致逼近多项式。解由可知,从而最小偏差为1,交错点为,

    10、此即为的切比雪夫交错点组,从而是以这些点为插值节点的拉格朗日多项式,可得。4、假设在上连续,求的零次最佳一致逼近多项式。解令,则在上具有最小偏差,从而为零次最佳逼近一次多项式。5、选择常数a,使得达到极小,又问这个解是否唯一?解因为是奇函数,所以,再由定理7可知,当时,即时,偏差最小。6、求在上的最佳一次逼近多项式,并估计误差。解由可得,从而最佳一次逼近多项式为7、求在上的最佳一次逼近多项式。解由可得,从而最佳一次逼近多项式为。8、如何选取r,使在上与零偏差最小?r是否唯一?解由,可知当与零偏差最小时,从而。另解:由定理7可知,在上与零偏差最小的二次多项式为,从而。9、设,在上求三次最佳逼近多

    11、项式。解设所求三次多项式为,则由定理7可知,从而。10、令,求、。解由可知,令,则,从而。 11、试证是在上带权的正交多项式。?12、在上利用插值极小化求的三次近似最佳逼近多项式。解由题意可知,插值节点为,即,则可求得。13、设在上的插值极小化近似最佳逼近多项式为,若有界,证明对任何,存在常数,使得。证明由题意可知,从而取,则可得求证。14、设在上,试将降低到3次多项式并估计误差。解因为,所以,误差为。15、在利用幂级数项数节约求的3次逼近多项式,使误差不超过0.005。解因为,取前三项,得到,误差为,又因为,所以3次逼近多项式为,此时误差为。16、是上的连续奇(偶)函数,证明不管n是奇数或偶

    12、数,的最佳逼近多项式也是奇(偶)函数。解的最佳逼近多项式是由切比雪夫多项式得到的,再由切比雪夫多项式的性质4即得。17、求a、b使为最小,并与1题及6题的一次逼近多项式误差作比较。解由,可得,解得。18、,定义(a);(b)。问它们是否构成内积?解(a)因为,但反之不成立,所以不构成内积。(b)构成内积。19、用许瓦兹不等式(4.5)估计的上界,并用积分中值定理估计同一积分的上下界,并比较其结果。解。因为,所以。20、选择a,使下列积分取最小值:,。解,从而。当时,当时,由,可得交点为,若,则,若,则。同理可知,当时,当时,从而当时,积分取得最小。21、设,分别在上求一元素,使其为的最佳平方逼

    13、近,并比较其结果。解由,可知,解得,即在上为。由,可知,解得,即在上为。22、在上,求在上的最佳平方逼近。解由,可知,解得。从而最佳平方逼近多项式为。23、是第二类切比雪夫多项式,证明它有递推关系。证明令,则。24、将在上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差。解若按照切比雪夫多项式展开,其中;若按照勒让德多项式展开,其中;从而;,从而三次最佳逼近多项式为。25、把在上展成切比雪夫级数。解若按照切比雪夫多项式展开,其中。从而。26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。192531384419.032.349.

    14、073.397.8解由。又,故法方程为,解得。均方误差为。27、观测物体的直线运动,得出以下数据:时间t(秒)00.91.93.03.95.0距离s(米)010305080110解设直线运动为二次多项式,则由。,。又,故法方程为,解得。故直线运动为。28-31略。补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:IU试用最小二乘原理确定电阻R的大小。解电流、电阻与电压之间满足如下关系:。应用最小二乘原理,求R使得达到最小。对求导得到:。令,得到电阻R为。2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。解令,求x使得达到最小。对求导得到:,令,得到,

    15、这说明取平均值在最小二乘意义下误差达到最小。3、有函数如下表,要求用公式拟合所给数据,试确定拟合公式中的a和b。-3-2-10123-1.760.421.201.341.432.254.38解取,则,而,。故法方程为,解得。4、在某个低温过程中,函数y依赖于温度的实验数据为12340.81.51.82.0已知经验公式的形式为,是用最小二乘法求出a和b。解取,则,而,。故法方程为,解得。5、单原子波函数的形式为,试按照最小二乘法决定参数a和b,已知数据如下:X0124y2.0101.2100.7400.450解对两边取对数得,令,则拟合函数变为,所给数据转化为X0124y0.69810.1906

    16、-0.3011-0.7985取,则,而,。故法方程为,解得。因而拟合函数为,原拟合函数为。第四章 数值积分与数值微分(107)1、确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度。1);解分别取代入得到:,即,解得又因为当时,;当时,;从而此求积公式最高具有3次代数精度。2);解分别取代入得到:,即,解得,又因为当时,;当时,;从而此求积公式最高具有3次代数精度。3);解分别取代入得到:,即,解得与,又因为当时,;,从而此求积公式最高具有2次代数精度。4)。解分别取代入得到:,所以,又因为当时,当时,所以此求积公式最高具有3次代数精度。2、分别用梯形公

    17、式和辛普森公式计算下列积分:(1);解。精确值为。2);(略)3);解(略),精确值为。4);(略)。3、直接验证柯特斯公式(2.4)具有5次代数精度。证明显然节点为,分别取代入得到:,;从而此求积公式最高具有5次代数精度。4、用辛普森公式求积分并估计误差。解。,从而。5、推导下列三种矩形求积公式:;解由微分中值定理有:,从而再由微分中值定理有:,从而。由微分中值定理有:,从而。6、证明梯形公式(2.9)与辛普森公式(2.11)当时收敛到积分。证明由与可得求证7、用复化梯形公式求积分,问要将积分区间分成多少等分,才能保证误差不超过(设不计舍入误差)?解由可知,令,则,从而。8、用龙贝格方法计算

    18、积分,要求误差不超过。解由及可得。(参见95页)9、卫星轨道是一个椭圆,椭圆周长的计算公式是,这里a是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h为近地点距离,H为远地点距离,公里为地球半径,则,。我国第一颗人造卫星近地点距离公里,远地点距离为2384公里,试求卫星轨道的周长。解由,可得。10、证明等式,试依据的值,用外推算法求的近似值。证明因为,由可得,。11、用下列方法计算积分,并比较结果。1)龙贝格方法;(2)三点及五点高斯公式;3)将积分区间分为四等分,用复化两点高斯公式。解。12、用三点公式和五点公式求在和1.2处的导数值,并估计误差,的值由下表给出:X1.01.11

    19、.21.31.40.25000.22680.20660.18900.1736解由三点公式,可知,误差为;,误差为,误差为。由五点公式可知,。1、计算上的积分的两点求积公式。解求积公式的代数精度不超过,将求积公式和求积系数作为4个待定系数,依次取被积函数为代入求积公式,得到方程组:,可以解得,从而求积公式为。2、直接验证梯形公式与中矩形公式具有一次代数精度,而辛普生公式具有三次代数精度。证明(1)依次将代入梯形公式中,得到:;,从而梯形公式具有一次代数精度。(2)依次将代入中矩形公式中,得到:;,从而中矩形公式具有一次代数精度。(3)依次将代入辛普生公式中,得到:;,从而辛普生公式具有三次代数精

    20、度。3、求近似求积公式的代数精度。解 依次将代入求积公式中,得到:;,因此所给求积公式具有三次代数精度。4、求三个不同的节点和常数C,使求积公式具有尽可能高的代数精度。解 依次将代入求积公式中,得到:,即,解得,此时求积公式为,具有3次代数精度。令代入求积公式中,得到:所以此求积公式的代数精度只有3次。5、用三个节点()的Gauss求积公式计算积分。解三个节点的Gauss求积公式为,所以。6、试确定常数A,B,C和,使得数值积分公式为Gauss型公式。解要使数值积分公式为Gauss型公式,则其具有次代数精度。依次将代入都应精确成立,故有,即,解得。7、试确定常数A,B,C和,使得数值求积公式具

    21、有尽可能高的代数精度。此时的代数精度是多少?它是否是Gauss型公式?解依次将代入求积公式,得到:,即,解得,从而求积公式为,令代入得到:,从而求积公式只具有3次代数精度,不是Gauss型公式。第五章 常微分方程数值解法(141-142)1、就初值问题分别导出欧拉方法和改进的欧拉方法的近似解的表达式,并与准确解相比较。解由欧拉公式可知,即,从而,即,又因为,所以。再由,可知误差为。由改进的欧拉公式可知,即,从而,即,又因为,所以。再由,可知误差为。2、用改进的欧拉方法求解初值问题,取步长计算,并与准确解相比较。解由改进的欧拉公式可知,又由,可得,从而;。3、用改进的欧拉方法解,取步长计算,并与

    22、准确解相比较。解由改进的欧拉公式可知,又由,可得,从而;。4、用梯形方法解初值问题,证明其近似解为,并证明当时,它收敛于原初值问题的准确解。解由梯形公式可知,从而,即,从而,又由可知,。5、利用欧拉方法计算积分在点的近似值。解令,则,从而令,利用欧拉方法得到:,又由,得到:;。6、取,用四阶经典的龙格-库塔方法求解下列初值问题:1);解由四阶经典的龙格-库塔方法可知,;。;又由可知,。从而由可得:;。精确解为。2)。精确解为。7、证明对任意参数t,下列龙格-库塔公式是二阶的。证明因为,所以而,比较系数可知,所给龙格-库塔公式是二阶精度的。8、证明下列两种龙格-库塔方法是三阶的:(1);(2);

    23、证明在三阶龙格-库塔公式中,(1)取,。即为所给方法,并且满足,因而具有三阶精度。(2)取,。即为所给方法,并且满足,因而具有三阶精度。9、分别用二阶显式亚当姆斯方法和二阶隐式亚当姆斯方法解下列问题:,取计算,并与准确解相比较。解由可知,当使用二阶显式亚当姆斯方法时,。从而,;当使用二阶隐式亚当姆斯方法时,即,从而。故;。精确解为。10、证明解的下列差分公式是二阶的,并求出截断误差的首项。证明因为,所以,从而比较系数可得差分公式具有二阶精度,并且截断误差首项为。11、导出具有下列形式的三阶方法:。解因为,所以,从而若公式具有三阶精度,则必须有:。12、将下列方程化为一阶方程组:1);解令,则,

    24、从而有,再令,则初值问题为。精确解为2)。解令,则,从而有,。3)。解令,则,从而有,初值为。13、取,用差分法解边值问题。解显然,令,及,代入得到:,即,再由可知, 解得。14、对方程可建立差分公式,试用这一公式求解初值问题,验证计算解恒等于准确解。解由差分格式可建立方程组。15、取,用差分方法解边值问题。解显然,令及,代入得到:,即,又由可得,从而由得方程组为:,可以解得。第六章 方程求根(163-164)阅读材料:一般的n次多项式方程称为n次代数方程。对于3次、4次的方程,虽然也可以在数学手册上查到求解公式,但是太复杂。至于5次以上的方程就没有现成的求解公式了。代数方程可以说是最简单的非

    25、线性方程,因为虽然不能很好地算出它的根,但是总可以知道,n次方程一般具有n个根。一般由实际问题归结得到的方程还常常含有三角函数、指数函数、对数函数等超越函数,如,这样的方程叫做超越方程。求解超越方程不仅没有一般的公式,而且若只依据方程本身,那么连是否有根、有几个根,也都难以判断。超越方程与次代数方程一起统称为非线性方程,记作,其中是一个单变量的初等函数,它可以是多项式函数、超越函数等形式或者它们的组合形式。所谓方程求根,就是寻找一个,使得成立,这样的叫做方程的根(解),也叫做函数的零点。若存在正整数m,使得,且,则称为的m重根。当时,又称为单根,这时满足,。对于一般的非线性方程,用直接方法得到

    26、它的精确解是很困难的,例如。非线性方程的求解就是研究方程在给定初值的条件下,如何利用计算机运算得到方程真解的近似值x,使得对任意给定的精度,满足,此时称x关于是精确的。对于具体的问题,首先要对函数加以初步的研究,判断出方程的根的个数和大概位置,才能较好地选择有根区间。如果选取得好,还可以把方程的根逐个分离,找出相应的有根区间。二分法的特点是当有单根时具有收敛快的特点。然而对方程有重根或复根的情况,二分法公式有时失效。1、用二分法求方程的正根,要求误差。解令,则,所以有根区间为;又因为,所以有根区间为;,所以有根区间为;,所以有根区间为;,所以有根区间为;,所以有根区间为;取,这时它与精确解的距离。2、用比例求根法求在区间的一个根,直到近似根满足精度终止计算。?3、为求方程在附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式:1),迭代公式


    注意事项

    本文(数值分析课程第五版课后习题答案(李庆扬等).doc)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开