液压元件详细教程Word文档格式.docx
- 文档编号:1506317
- 上传时间:2023-04-30
- 格式:DOCX
- 页数:26
- 大小:38.57KB
液压元件详细教程Word文档格式.docx
《液压元件详细教程Word文档格式.docx》由会员分享,可在线阅读,更多相关《液压元件详细教程Word文档格式.docx(26页珍藏版)》请在冰点文库上搜索。
同时主阀芯上端的压力油通过阻尼器(3)、通道(5)、弹簧腔(9)及通道(10)流回B腔(控制油内排型)或通过外排口(11)流回油箱(控制油外排型)。
这样,当压力油通过阻尼器
(2)、(3)时在主阀芯
(1)上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A腔流到B腔(即卸荷)。
DBW型电磁溢流阀:
此阀工作原理与DB型阀相同,只是可通过安装在先导阀上的电磁换向阀(14)使系统在任意时刻卸荷。
DB/DBW型阀均设有控制油内部供油道(12)、(4)和内部排油道(10);
控制油外供口X和外排口Y。
这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。
2.溢流阀常见故障及排除
溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。
(一)噪声和振动
液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。
产生噪声的因素很多。
溢流阀的噪声有流速声和机械声二种。
流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。
机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。
(1)压力不均匀引起的噪声
先导型溢流阀的导阀部分是一个易振部位如图3所示。
在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。
过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。
另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。
所以一般认为导阀是发生噪声的振源部位。
由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。
(2)空穴产生的噪声
当由于各种原因,空气被吸入油液中,或者在油液压力低于大气压时,溶解在油液中的部分空气就会析出形成气泡,这些气泡在低压区时体积较大,当随油液流到高压区时,受到压缩,体积突然变小或气泡消失;
反之,如在高压区时体积本来较小,而当流到低压区时,体积突然增大,油中气泡体积这种急速改变的现象。
气泡体积的突然改变会产生噪声,又由于这一过程发生在瞬间,将引起局部液压冲击而产生振动。
先导型溢流阀的导阀口和主阀口,油液流速和压力的变化很大,很容易出现空穴现象,由此而产生噪声和振动。
(3)液压冲击产生的噪声
先导型溢流阀在卸荷时,会因液压回路的压力急骤下降而发生压力冲击噪声。
愈是高压大容量的工作条件,这种冲击噪声愈大,这是由于溢流阀的卸荷时间很短而产生液压冲击所致在卸荷时,由于油流速急剧变化,引起压力突变,造成压力波的冲击。
压力波是一个小的冲击波,本身产生的噪声很小,但随油液传到系统中,如果同任何一个机械零件发生共振,就可能加大振动和增强噪声。
所以在发生液压冲击噪声时,一般多伴有系统振动。
(4)机械噪声
先导型溢流阀发出的机械噪声,一般来自零件的撞击和由于加工误差等产生的零件磨擦。
在先导型溢流阀发出的噪声中,有时会有机械性的高频振动声,一般称它为自激振动声。
这是主阀和导阀因高频振动而发生的声音。
它的发生率与回油管道的配置、流量、压力、油温(粘度)等因素有关。
一般情况下,管道口径小、流量少、压力高、油液粘度低,自激振动发生率就高。
减小或消除先导型溢流阀噪声和振动的措施,一般是在导阀部分加置消振元件。
消振套一般固定在导阀前腔,即共振腔内,不能自由活动。
在消振套上都设有各种阻尼孔,以增加阻尼来消除震动。
另外,由于共振腔中增加了零件,使共振腔的容积减小,油液在负压时刚度增加,根据刚度大的元件不易发生共振的原理,就能减少发生共振的可能性。
消振垫一般与共振腔活动配合,能自由运动。
消振垫正反面都有一条节流槽,油液在流动时能产生阻尼作用,以改变原来的流动情况。
由于消振垫的加入,增加了一个振动元件,扰乱了原来的共振频率。
共振腔增加了消振垫,同样减少了容积,增加了油液受压时的刚度,以减少发生共振的可能性。
在消振螺堵上设有蓄气小孔和节流边,蓄气小孔中因留有空气,空气在受压时压缩,压缩空气具有吸振作用,相当于一个微型吸振器。
小孔中空气压缩时,油液充入,膨胀时,油液压出,这样就增加了一个附加流动,以改变原来的流动情况。
故也能减小或消除噪声和振动。
另外,如果溢流阀本身的装配或使用权用不当,也都会造成振动,产生噪声。
如三节同心式溢流阀,装配时三节同心配合不当,使用时流量过大或过小,锥阀的不正常磨损等。
在这种情况下,应认真检查调整,或更换零件。
(二)阀芯径向卡紧
因加工精度的影响,造成主阀芯径向卡紧,使主阀开启不上压或主阀关闭不卸压,另因污染造成径向卡紧。
(三)调压失灵
溢流阀在使用中有时会出现调压失灵现象。
先导型溢流阀调压失灵现象有二种情况:
一种是调节调压手轮建立不起压力,或压力达不到额定数值;
另一种调节手轮压力不下降,甚至不断升压。
出现调压失灵,除阀芯因种种原因造成径向卡紧外,还有下列一些原因:
第一是主阀体
(2)阻尼器堵塞,油压传递不到主阀上腔和导阀前腔,导阀就失去对主阀压力的调节作用。
因主阀上腔无油压力,弹簧力又很小,所以主阀变成了一个弹簧力很小的直动型溢流阀,在进油腔压力很低的情况下,主阀就打开溢流,系统就建立不起压力。
压力达不到额定值的原因,是调压弹簧变形或选用错误,调压弹簧压缩行程不够,阀的内泄漏过大,或导阀部分锥阀过度磨损等。
第二是阻尼器(3)堵塞,油压传递不到锥阀上,导阀就失去了支主阀压力的调节作用。
阻尼器(小孔)堵塞后,在任何压力下锥阀都不会打开溢流油液,阀内始终无油液流动,主阀上下腔压力一直相等,由于主阀芯上端环形承压面积大于下端环形承压面积,所以主阀也始终关闭,不会溢流,主阀压力随负载增加而上升。
当执行机构停止工作时,系统压力就会无限升高。
除这些原因以外,尚需检查外控口是否堵住,锥阀安装是否良好等。
(四)其它故障
溢流阀在装配或使用中,由于“O”形密封圈、组合密封圈的损坏,或者安装螺钉、管接头的松动,都可能造成不应有的外泄漏。
如果锥阀或主阀芯磨损过大,或者密封面接触不良,还将造成内泄漏过大,甚至影响正常工作。
电磁溢流阀常见的故障有先导电磁阀工作失灵、主阀调压失灵和卸荷时的冲击噪声等。
后者可通过调节加置的缓冲器来减少或消除。
如不带缓冲器,则可在主阀溢流口加一背压阀。
(压力一般调至5kgf/cm2左右,即0.5MPa)
二、DR型先导式减压阀
阀处在不工作时,阀处于开启状态,油可经主阀芯
(1)从B口流向A口。
DR10型在A腔建立起压力的同时,压力油通过阻尼器
(2)和(3),控制通道(4)和(13)作用到主阀芯
(1)上端和先导阀的锥阀(6)上。
当A腔压力超过了弹簧的调定压力时锥阀(6)被打开。
这时主阀芯上腔的油通过阻尼器(3)流到弹簧腔(7),这样在主阀芯上形成一个压力差,在这压力差作用下主阀芯产生位移,减小开口,以保持A腔压力的恒定。
控制油经通道(8)或(9)从外部排回油箱。
若选择有单向阀的结构,油可以从A腔流到B腔。
DR20和DR30型这两种与DR10型阀工作原理相同,只是控制油是从通道(4)引入的,并在先导阀内装有限制控制油的流量恒定器(12)。
当流量Q=0时,过载阀(10)可限制A腔压力的升高,保证阀不被破坏。
ZDR…D直动型减压阀是叠加阀。
它是一种三通阀,即有二次回路卸荷装置的阀。
它主要用来降低部分系统的压力。
该阀主要由阀体
(1)、控制阀芯
(2)、两个压力弹簧(3)、压力调节装置(4)以及可选择的单向阀组成。
用调节装置(4)调节二次压力。
阀是常开状态的,也就是说油可以畅通地由通道P流向P1(DP型),或从A流到A1(DA型)。
P1腔的压力油经控制通道(5)流到阀芯的左端,使阀芯压在弹簧上。
当P1腔的压力(即负载)超过调节弹簧(3)的调定值时,阀芯
(2)在调节区域内移动,以保持其P1腔的压力恒定。
控制油是从P1腔经通道(5)引入的。
P1腔的压力由于外负载的作用而继续升高,则使阀芯压缩弹簧使压力油经阀芯上的孔(6)流到T腔(卸荷),则压力不再升高,从而实现过载保护。
泄漏油是通过弹簧腔(7)排到油箱的。
“DA”可选择单向阀,油从A1腔流回。
在连接口(8)安装压力表,可检测二次压力值。
ZDR…D型减压阀是叠加板式减压阀。
它是一种三通阀,即有二次回路保护装置的阀。
该阀主要用来降低系统的压力。
该阀主要是由阀体
(1)、控制阀芯
(2)、两个压力弹簧(3)、压力调节装置(4)以及可以选择的单向阀组成。
旋转压力调节装置(4)可调节二次压力。
在静止时阀处于开启状态,也就是说油可以畅通地由通道P流向通道P1(DP型)从A流向A1(DA型)和从B流向B1(DB型)。
P1腔的压力油经控制通道(5)流到阀芯的左侧,使阀总压再弹簧上。
当P1腔的压力(即负载)超过调节弹簧(3)的调节值时,阀芯
(2)在调节区域内移动,以保持其P1腔压力的恒定。
P1腔的压力由于外负载的作用而继续升高,则推动阀芯压缩弹簧使压力油经阀芯上的孔(7)流到T腔压力不再升高,从而实现了过载保护。
泄漏油是通过弹簧腔(8)排到油箱的。
“DA”和DB型减压阀,可安装单向阀,油可从A1流到A和B1流到B。
在压力表连接口(9)可测得二次压力数值。
2.减压阀的常见故障及排除
减压阀的常见故障有调压失灵、阀芯径向卡紧、工作压力调定后出油口压力自行升高、噪声、压力波动及振荡等。
(一)调压失灵
调压失灵有如下一些现象:
调节调压手轮,出油口压力不上升。
其原因之一是主阀芯阻尼孔堵塞、阻尼器
(2)和阻尼器(3)堵塞,出油口油液不能流入主阀上腔和导阀部分前腔,出油口压力传递不到锥阀上,使导阀失去对主阀出油口压力调节的作用。
又因阻尼孔堵塞后,主阀上腔失去了油压P3的作用,使主阀变成一个弹簧力很弱的直动型滑阀,故在出油口压力很低时就将主阀减压口关闭,使出油口建立不起压力。
另外,主阀减压口关阀时,由于主阀芯卡住,锥阀未安装在阀座孔内,外控口未堵住等,也是使出油口压力不能上升的原因。
出油口压力上升后达不到额定数值,其原因有调压弹簧选用错误,永久变形或压缩行程不够,锥阀磨损过大等原因。
调节调压手轮,出油口压力和进油口压力同时上升或下降,其原因有锥阀座阻尼小孔堵塞,阻尼器(3)堵塞,泄油口堵住和单向阀泄漏等原因。
锥阀座阻尼小孔堵塞,阻尼器(3)堵塞后,出油口压力同样也传递不到锥阀上,使导阀失去对主阀出油口压力调节作用。
又因阻尼小孔堵塞后,使无先导流量流经主阀芯阻尼器(3),使主阀上、下腔油液压力相等,主阀芯在主阀弹簧力的作用下处于最下部位置,减压口通流面积为最大,所以油口压力就随进油口压力的变化而变化。
如泄油口堵住,从原理上来说,等于锥阀座阻尼小孔堵塞,阻尼器(3)堵塞。
这时出油口压力虽能作用在锥阀上,但同样也无先导流量流经主阀芯阻尼器,阻尼器(3),减压口通流面积也为最大,故出油口压力也跟随进油口压力的变化而变化。
当单向减阀的单向阀部分泄漏严重时,进油压力就会通过泄漏处传递给出油口,使出油口压力也会跟随进油口压力的变化而变化。
另外,当主阀减压口处于全开位置时,由于主阀芯卡住,也是使出油口压力随进油口压力变化的原因。
调节调压手轮时,出油口压力不下降。
其原因主要由于主阀芯卡住引起。
出口压力达不到最低调定压力的原因,主要由于先导阀中“O”形密封圈与阀盖配合过紧等。
由于减压阀和单向减压阀的主阀弹簧力很弱,主阀芯在高压情况下容易发生径向卡紧现象,而使阀的各种性能下降,也将造成零件的过度磨损,并缩短阀的使用寿命,甚至会使阀不能工作,因此必须加以消除。
(三)工作压力调定后出油口压力自行升高
在某些减压控制回路中,如用来控制电液换向阀或外控顺序阀等,当电液换向阀或外控制顺序阀换向或工作后,减压阀出油口的流量即为零,但压力还需保持原先调定的压力。
在这种情况下减压阀的出油口压力往往会升高,这是由于主阀泄漏量过大所引起。
在这种工作状况中,因减压阀出口流量变为零,流量流经减压口的流量只有先导流量,由于先导流量很小,一般在2升/分以内,因此主阀减压口基本上处于全关位置,先导流量由三角槽或斜面处流出。
如果主阀芯配合过松或磨损过大,则主阀泄漏量增加。
按流量连续性定理,这部分泄漏量也必须从主阀阻尼孔内流出流经阻尼孔的流量即由原有的先导流量和这部分泄漏量二部分组成。
因阻尼孔面积和主阀上腔油液压力P3未变(P3由已调整好的调压弹簧预压缩量确定),为使通过阻尼孔的流量增加,而必然引起主阀下腔油液压力P2的升高。
因此,当减压阀出口压力调定好后,如果出口流量为零时,出口压力会因主阀芯配合过松或磨损过大而升高。
(四)噪声、压力波动及振动
由于减压阀是一个先导式的双级阀,其导阀部分和溢流阀的导阀部分通用,所以引起噪声和压力波动的原因也和溢流阀基本相同。
减压阀在超流量使用中,有时会出现主阀振荡现象,使出油口压力不断地升压—卸荷—升压—卸荷,这是由于无穷大的流量使液流力增加所致。
当流量过大时,软弱的主阀弹簧平衡不了由于过大流量所引起的液流力的增加,因此主阀芯在液流力作用下使减压口关闭,出油口压力和流量即为零,则液流力即也为零,于是主阀芯在主阀弹簧力作用下,又使减压口打开,出油口压力和流量又增大,于是液流力又增加,使减压口关闭,出油口压力和流量又为零。
这样就形成主阀芯振荡,使出油口压力不断地变化,因此减压阀在使用时不宜超过推荐的公称流量。
三、DZ型先导顺序阀
DZ型先导顺序阀适用于按压力控制顺序动作的液压系统。
DZ型阀是由先导阀、带插入式主阀芯的主阀及可供选择的单向阀组成。
根据控制油的供给和排出的不同情况,构成不同型式(见图形符号)。
背压阀DZ…―30/210
A腔的压力油由通道
(2)通过阻尼器
(1)作用在先导阀(4)的控制活塞(3)上,同时压力油也通过阻尼器(5)作用在主阀芯(6)的上腔。
当A腔压力升高超过弹簧(7)的调定值时,控制活塞朝着弹簧(7)的方向移动。
此时主阀芯(6)上腔的油通过阻尼器(8)、控制边14和通道(9)流到B腔,并在主阀芯(6)上形成1个压力差,使主阀芯打开,把A腔和B腔接通。
在弹簧(7)的作用下可保持这个开启压力的恒定。
在控制活塞上的泄漏油通过内部通道(10)流到B腔。
若从B腔向A腔回油,可选择带有内装单向阀的结构。
背压阀DZ…—30/210X…
这种阀的工作原理与DZ…—30/210型相同,只是控制油输入方式不同。
DZ…—30/210X…型阀的控制油是通过通道
(2)从外部输入的。
顺序阀DZ…—30/210Y
这种阀的工作原理与DZ…—30/210型相同,只是控制活塞处泄漏油排出方式不同。
DZ…—30/210Y型阀控制活塞的泄漏油必须是通过通道(10)或者是(11)在无背压的情况下排回油箱。
控制油经过通道(9)排到B腔。
卸荷阀DZ…—30/210XY
X腔的压力油经过通道
(2)、阻尼器
(1)作用在先导阀(4)的控制活塞(3)上,同时A腔的压力油通过阻尼器(5)作用主阀芯(6)的上腔。
当X腔的压力升高并超过弹簧(7)调定的数值时,使控制活塞(3)朝着弹簧(7)的方向移动,由于控制活塞(3)的移动使主阀芯上腔的油通过阻尼器(8)和孔(15)流到先导阀(4)的弹簧腔(12)。
这样就使压力油在几乎没有压力损失的情况下从A腔流到B腔,从而达到卸荷的目地。
弹簧腔(12)的油在无背压的情况下从通道(10)或(11)排到油箱。
若要使压力油从B向A流动,则选用带有单向阀的结构即可实现。
2.顺序阀的常见故障及排除
顺序阀及单向顺序阀的主要故障是不起顺序作用。
这有二种情况,一种是进油腔和出油腔压力同时上升或下降;
另一种是出油腔没有流量。
第一种情况的原因之一是阀芯内的阻尼器(5)堵塞,使控制活塞的泄漏油无法进入调压弹簧腔流回油箱。
时间一长,进入油腔压力通过泄漏油传入闪下腔,作用在阀芯下端面上,因阀芯下端面积比控制活塞要大得多,所以阀芯在液压力作用下使阀处于全开位置,变成一个常开阀,因此进油腔和出油腔压力会同时上升或下降。
另外,阀芯在阀处于全开位置时卡住也会引起上述现象。
阻尼器
(1)堵塞也是如此。
第二种情况的原因是泄油口安装成内部回油形式,使调压弹簧腔的油液压力等于出油腔油液压力。
因阀芯上端面积大于下端面积,阀芯在液压力作用下使阀口关闭,顺序阀变成一个常闭阀,出油腔没有流量。
另外,阻尼器(8)堵塞、阀芯在阀处于全关位置时卡住也会引起上述现象。
(出油腔没有流量)
当端盖上的阻尼器
(1)堵塞时,控制油液就不能进入控制活塞腔,阀芯在调压弹簧力作用下使阀口关闭,出油腔同样也没有流量。
四、DA/DAW型先导控制式卸荷阀
1.工作原理
DA/DAW型阀是先导控制式卸荷阀,它的作用是给蓄能补油,采用高低压双泵的液压系统中,可使低压泵卸荷。
该阀主要是由先导阀、带主阀芯的主阀和单向阀组成。
通径10的单向阀在主阀体内,而通径25和32单向阀是在主阀底下的连接板内。
DA型阀
从P→A切换到P→T
泵输出的液流从单向阀
(1)流到A腔(P→A),同时通过通道(3)流到活塞(4);
通过阻尼器(5)流到主阀(6)的上腔,并且经过阻尼器(7)作用在锥阀(8)上。
一但系统压力达到先导阀
(2)调定的卸荷压力时,立即把锥阀(8)打开。
当控制油经过阻尼器(5)和(7)通过Y排到T腔时,由于阻尼器(5)和(7)在主阀(6)上产生了一个压力降。
这时主阀(6)打开,压力油从P腔流到T腔(P→T)。
当主阀开启并且打开时(P→T),由于A腔的压力作用在柱塞(4)和单向阀上,使得锥阀(8)打开和单向阀关闭。
这样就完成了从P→A切换到P→T。
从P→T切换到P→A
由于柱塞(4)的面积比锥阀(8)的有效面积大17%,所以活塞上的作用力也比锥阀上的作用力大17%。
如果蓄能器的压力低于它相对应的切换压力差时,弹簧(9)将锥阀(8)关闭。
这样主阀(6)上腔建立起压力,使主阀芯(6)关闭,即关闭了P→T。
这样泵输出的液流重新又经过单向阀进入到液压系统。
DAW型阀
这种阀的性能与DA型阀相同,只是在先导阀
(2)上有个电磁阀,可在先导阀调定的切换压力下任意实现从A→T或T→A。
2.DA/DAW型先导控制式牌子荷阀常见故障及排除
(一)卸荷阀不卸荷
由于阻尼器(7)堵塞,阀芯上腔油液无排出故在导阀开启的情况下,主阀上下腔压力相等且上端面积大于下端面积,无法开启,P→T无油卸荷;
主阀在关闭位置时卡住同样不能卸荷;
柱塞(4)卡住无法打开导阀则同样不能卸荷。
(二)非卸荷状态下卸荷
由于阻尼器(5)堵塞阀芯上腔未有油压作用,而主阀弹簧力很弱,故主阀芯在很小的力作用开启而卸荷;
主阀在开启位置时卡住同样卸荷,而控力并未达导阀的调定值。
导阀活塞卡住,导阀常开,则亦卸荷。
(三)DAW型的电磁阀故障同样造成上述二种故障发生。
(四)各“O”形密封圈损坏而引起各部位外泄漏。
五、压力继电器的常见故障及排除
压力继电器的常见故障是灵敏度降低和微动开关损坏等。
前者是由于阀芯、推杆的径向卡紧,或微动开关空行程过大等引起。
当阀芯或推杆发生径向卡紧时,磨擦力增加,这个阻力与阀芯和推杆的运动方向相反,它一个方向帮助油液压力克服弹簧力,使油液压力降低,因而使压力继电器的灵敏度降低。
在使用中,由于微动开关支架变形,或零位可调部分松动,都会使原来调整好或在装配后保证的微动开关最小空行程变大,使灵敏度降低。
压力继电器的泄漏如不直接接回油箱,由于泄油口背压过高,也会使灵敏度降低。
差动式压力继电器,因微动开关部分和泄油腔反时,压力即冲破橡胶隔膜进入微动开关部分,从而损坏微动开关。
另外,由于调压弹簧腔和泄油腔相通,调节螺钉处又无密封装置,当泄油压力过高时,在调节螺钉处会出现外泄漏现象。
所以泄油腔必须直接接回油箱。
另外,电器接座处也无密封装置,油液泄到微动开关处,使灵敏降低,且由此处外泄漏。
压力继电器是一种将油液的压力信号转换成电信号的小型电液控制元件。
当油液压力达到压力继电器的调定压力时,即发出电信号,以控制电磁铁、电磁离合器、继电器等电气元件动作,使油路卸荷、卸压、换向、执行机构实现顺序动作,或关闭电动机,使系统停止工作,起到安全保护作用等。
六、压力表开关的常见故障及排除
(一)测压不准确
压力表开关中一般都有阻尼孔,当油液中脏物将阻尼孔部分堵塞时,压力表的指针就会剧烈跳动,影响测量值的准确性。
KF型压力表开关阀口阻尼调节过大时,亦会引起压力表指针摆动缓慢和迟钝,测出的压力值也会不准确。
使用时应注意油液的清洁,阻尼大小的调节应适当。
(二)内外泄漏增大
KF型压力表开关在长期使用后,由于阀口磨损过大,无法严格关闭,内泄漏量增大,使压力表指针随进油腔压力变化而变化;
K型压力表开关由于密封面磨损过大,间隙增大,内泄漏量增大,使各测量点的压力互相窜通,这时应更换被磨损的零件。
压力表开关调节手柄处因“O“形密封圈损坏而外漏油。
七、单向阀、液控单向阀、SV/SL型液控单向阀、叠加式液控单向阀
单向阀又称止回阀或逆止阀。
用于液压系统中防止油流反向流动。
单向阀有直通式和直角式两种。
如图15、图16所示。
SV和SL型液控单向阀都是座式阀,由液压开启,能给出反向流。
这种阀用来隔离局部压力回路,即作为在管子破裂时防止负载降落的保护,也可防止负载下爬。
这种液控单向阀主要包括阀体
(1)、主阀
(2)、先导阀(3)、压缩弹簧(4)和控制活塞(5)。
SV型阀(无泄油口)——泄漏油内部回油
由A口至B口始终可以流动。
反方向上则导阀(3)和主阀
(2)被压缩弹簧(4)和系统压力保持在阀座上。
若X口供给压力油则控制活塞(5)被推向右。
这首先打开导阀(3),然后打开主阀
(2)。
于是油液先通过导阀,然后通过主导阀。
为了保证用控制活塞(5)能可靠地操纵,需要一定的最低控制压力,如图18。
SL型阀(带泄油口)——泄漏油外部回油
在原理上,此阀与SV型有相同的功能。
不同之处在于增加了泄油口Y,这就可使控制活(5)的环形面积与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 液压 元件 详细 教程