碳含量对不锈钢的影响.docx
- 文档编号:2009446
- 上传时间:2023-05-02
- 格式:DOCX
- 页数:11
- 大小:24.77KB
碳含量对不锈钢的影响.docx
《碳含量对不锈钢的影响.docx》由会员分享,可在线阅读,更多相关《碳含量对不锈钢的影响.docx(11页珍藏版)》请在冰点文库上搜索。
碳含量对不锈钢的影响
碳是工业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著。
碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成—系列复杂的碳化物。
所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的。
认识了这一影响的规律,我们就可以从不同的使用要求出发,选择不同含碳量的不锈钢。
例如工业中应用最广泛的,也是最起码的不锈钢——0Crl3~4Cr13这五个钢号的标准含铬量规定为12~14%,就是把碳要与铬形成碳化铬的因素考虑进去以后才决定的,目的即在于使碳与铬结合成碳化铬以后,固溶体中的含铬量不致低11.7%这一最低限度的含铬量。
就这五个钢号来说由于含碳量不同,强度与耐腐蚀性能也是有区别的,0Cr13~2Crl3钢的耐腐蚀性较好但强度低于3Crl3和4Cr13钢,多用于制造结构零件,后两个钢号由于含碳较高而可获得高的强度多用于制造弹簧、刀具等要求高强度及耐磨的零件。
又如为了克服18-8铬镍不锈钢的晶间腐蚀,可以将钢的含碳量降至0.03%以下,或者加入比铬和碳亲和力更大的元素(钛或铌),使之不形成碳化铬,再如当高硬度与耐磨性成为主要要求时,我们可以在增加钢的含碳量的同时适当地提高含铬量,做到既满足硬度与耐磨性的要求,又兼顾—定的耐腐蚀功能,工业上用作轴承、量具与刃具有不锈钢9Cr18和9Cr17MoVCo钢,
含碳量虽高达0.85~0.95%,由于它们的含铬量也相应地提高了,所以仍保证了耐腐蚀的要求。
总的来讲,目前工业中获得应用的不锈钢的含碳量都是比较低的,大多数不锈钢的含碳量在0.1~0.4%之间,耐酸钢则以含碳0.1~0.2%的居多。
含碳量大于0.4%的不锈钢仅占钢号总数的一小部分,这是因为在大多数使用条件下,不锈钢总是以耐腐蚀为主要目的。
此外,较低的含碳量也是出于某些工艺上的要求,如易于焊接及冷变形等。
各种元素对不锈钢的性能和组织的影响和作用1.铬在不锈钢中的决定作用:
决定不锈钢性属的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬。
迄今为止,还没有不含铬的不锈钢。
铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,促使其内部的矛盾运动向有利于抵抗腐蚀破坏的方面发展。
这种变化可以从以下方面得到说明:
①铬使铁基固溶体的电极电位提高
②铬吸收铁的电子使铁钝化钝化是由于阳极反应被阻止而引起金属与合金耐腐蚀性能被提高的现象。
构成金属与合金钝化的理论很多,主要有薄膜论、吸附论及电子排列论。
2.碳在不锈钢中的两重性碳是工业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著。
碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成—系列复杂的碳化物。
所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的。
认识了这一影响的规律,我们就可以从不同的使用要求出发,选择不同含碳量的不锈钢。
例如工业中应用最广泛的,也是最起码的不锈钢——0Crl3~4Cr13这五个钢号的标准含铬量规定为12~14%,就是把碳要与铬形成碳化铬的因素考虑进去以后才决定的,目的即在于使碳与铬结合成碳化铬以后,固溶体中的含铬量不致低于11.7%这一最低限度的含铬量。
就这五个钢号来说由于含碳量不同,强度与耐腐蚀性能也是有区别的,
0Cr13~2Crl3钢的耐腐蚀性较好但强度低于3Crl3和4Cr13钢,多用于制造结构零件,后两个钢号由于含碳较高而可获得高的强度多用于制造弹簧、刀具等要求高强度及耐磨的零件。
又如为了克服18-8铬镍不锈钢的晶间腐蚀,可以将钢的含碳量降至0.03%以下,或者加入比铬和碳亲和力更大的元素(钛或铌),使之不形成碳化铬,再如当高硬度与耐磨性成为主要要求时,我们可以在增加钢的含碳量的同时适当地提高含铬量,做到既满足硬度与耐磨性的要求,又兼顾—定的耐腐蚀功能,工业上用作轴承、量具与刃具有不锈钢9Cr18和9Cr17MoVCo钢,
含碳量虽高达0.85~0.95%,由于它们的含铬量也相应地提高了,所以仍保证了耐腐蚀的要求。
总的来讲,目前工业中获得应用的不锈钢的含碳量都是比较低的,大多数不锈钢的含碳量在0.1~0.4%之间,耐酸钢则以含碳0.1~0.2%的居多。
含碳量大于0.4%的不锈钢仅占钢号总数的一小部分,这是因为在大多数使用条件下,
不锈钢总是以耐腐蚀为主要目的。
此外,较低的含碳量也是出于某些工艺上的要求,如易于焊接及冷变形等。
碳元素对奥氏体不锈钢的影响来源:
编辑:
日期:
2007-4-2加入收藏碳在奥氏体不锈钢中是强烈形成并稳定奥氏体且扩大奥氏体区的元素.碳形成奥氏体的能力约为镍的30倍,碳是一种间隙元素,通过固溶强化可显著提高奥氏体不锈钢的强度.碳还可提高奥氏体不锈钢在高浓氯化物(如42%MgCl2沸腾溶液)
中的耐应力腐蚀的性能。
但是,在奥氏体不锈钢中,碳常常被视为有害元素,这主要是由于在不锈钢和耐蚀用途中的一些条件下(比如焊接或经450~850℃加热),碳可与钢中的铬形成高铬的Cr23C6型碳化合物从而导致局部铬的贫化,使钢的耐蚀性特别是耐晶间腐蚀性能下降.因此,60年代以来新发展的铬镍奥氏体不锈钢大都是碳含量小于0.03%或0.02%超低碳型的,可以知道随着碳含量降低,钢的晶间腐蚀敏感性降低,当碳含量低于0.02%才具有最明显的效果,一些实验珠光还指出,碳还会增大铬奥氏体不锈钢的点腐蚀分倾向.由于碳的有害作用,不仅在奥氏体不锈钢冶炼过和中应按要求控制尽量低的碳含量,而且在随后的热,冷加工和热处理等过程中也在防止不锈钢表面增碳,且免铬的碳化物析出。
碳钢中除铁和碳外,还有锰、硅、硫、磷等杂质,对钢的性能和焊接有一定的影响。
(1)碳(c):
当钢中含碳量低时,钢的塑性提高,硬度降低,碳化物减少。
当含碳量增加时,钢的强度、硬度明显提高,耐磨性增加但塑性降低。
碳对钢的可焊性影响很大,随着含碳量的增加可焊性下降。
焊接时,碳是一种良好的脱氧剂,它在高温情况下具有很强的还原作用。
随着含碳量的增加,可直接减少氧和氮在焊缝中的含量。
当含碳量过高时钢的塑性、韧性和可焊性急剧变坏,同时由于还原作用剧烈会引起较大的飞溅并产生气孔。
焊缝金属含碳量过高还会使凝固温度降低,不利于仰焊作业,淬火倾向增加,易出现裂缝。
(2)锰(Mn):
锰是合金剂,当钢中含锰量小于2时,随台锰量增加。
钢的强度和韧性也相应提高。
但含锰量过高(超过2)时,会增大钢的淬火、过热的敏感性。
焊接时,锰又是良好的脱氧剂。
若含锰量超过0.6时,可增加熔渣中的氧化锰含量提高熔渣的流动性。
锰还是很好的脱硫剂,它能与硫化合生成硫化锰以熔渣形式浮于铁水表面,从而减步焊缝热裂纹的倾向。
(3)硅(s,):
硅是较好的合金剂,钢中含适量的硅能提高强度、弹性及耐蚀性能,但含量过高,就会降低钢的塑性和韧性。
焊接时,硅具有较强的脱氧能力。
当含硅量过多时,会引起焊接飞溅现象,容易造成二氧化硅的非金属夹杂,降低焊缝金属的塑性。
(4)硫(s):
是钢中的有害杂质。
它会引起严重偏析使钢的组织不均匀,
性能变坏还会大大降低金属的耐蚀性。
焊接时,硫在高温条件下与铁化合生成低熔点硫化亚铁它与其化合物能形成熔点更低的低熔点共晶体(熔点985℃),聚集在晶界处,使焊缝产生热裂纹。
(5)磷(P):
也是一种有害物质。
它在钢中以磷化铁的形式存在使钢的塑性和韧性下降并能提高钢的脆性转变温度但少量的磷能改善钢的流动性。
焊接时,生成的磷化铁在金属凝固后,会使金属变脆,这种现象称为冷脆性。
另外,磷化铁还能与其它物质形成低熔点共晶体,引起热裂纹不锈钢焊接性能悬赏分:
15 - 解决时间:
2008-3-29 22:
00
在不锈钢的应用中对不锈钢结构进行焊接和切割是不可避免的。
由于不锈钢本身所具有的特性,与普碳钢相比不锈钢的焊接及切割有着其特殊性,更易在其焊接接头及其热影响区HAZ产生各种缺陷。
焊接时要特别注意不锈钢的物理性质。
例如奥氏体型不锈钢的热膨胀系数是低碳钢和高铬系不锈钢的1.5倍导热系数约是低碳钢的1/3,而高铬系不锈钢的导热系数约是低碳钢的1/2比电阻是低碳钢的4倍以上,而高铬系不锈钢是低碳钢的3倍。
这些条件加上金属的密度、表面张力、磁性等条件都对焊接条件产生影响。
马氏体型不锈钢一般以13%Cr钢为代表。
它进行焊接时,由于热影响区中被加热到相变点以上的区域内发生a-rM相变,因此存在低温脆性、低温韧性恶化、伴随硬化产生的延展性下降等问题。
因而对于一般马氏体型不锈钢焊接时需进行预热,但碳、氮含量低的和使用r系焊接材料时可不需预热。
焊接热影响区的组织通常又硬又脆。
对于这个问题,可通过进行焊后热处理使其韧性和延展性得到恢复。
另外碳、氮含量低的牌号,在焊接状态下也有一定的韧性。
铁素体型不锈钢以18%Cr钢为代表。
在含碳量低的情况下有良好的焊接性能,焊接裂纹敏感性也较低。
但由于被加热至900℃以上的焊接热影响区晶粒显著变粗,使得在室温下缺少延伸性和韧性,易发生低温裂纹。
也就是说,一般来讲铁素体型不锈钢有475℃脆化、700-800℃长时间加热下发生б相脆性、夹杂物和晶粒粗化引起的脆化、低温脆化、碳化物析出引起耐蚀性下降以及高合金钢中易发生的延迟裂纹等问题。
通常应在焊接时进行焊前预热和焊后热处理,并在具有良好韧性的温度范围进行焊接。
奥氏体型不锈钢以18%Cr-8%Ni钢为代表。
原则上不须进行焊前预热和焊后热处理。
一般具有良好的焊接性能。
但其中镍、钼的含量高的高合金不锈钢进行焊接时易产生高温裂纹。
另外还易发生б相脆化,在铁素体生成元素的作用下生成的铁素体引起低温脆化,以及耐蚀性下降和应力腐蚀裂纹等缺陷。
经焊接后,
焊接接头的力学性能一般良好,但当在热影响区中的晶界上有铬的碳化物时会极易生成贫铬层,而贫铬层和出现将在使用过程中易产生晶间腐蚀。
为避免问题的发生,应采用低碳C≤0.03%的牌号或添加钛、铌的牌号。
为防止焊接金属的高温裂纹,通常认为控制奥氏体中的δ铁素体肯定是有效的。
一般提倡在室温下含5%以上的δ铁素体。
对于以耐蚀性为主要用途的钢,应选用低碳和稳定的钢种,并进行适当的焊后热处理而以结构强度为主要用途的钢,不应进行焊后热处理,以防止变形和由于析出碳化物和发生δ相脆化。
双相不锈钢的焊接裂纹敏感性较低。
但在热影响区内铁素体含量的增加会使晶间腐蚀敏感性提高,因此可造成耐蚀性降低及低温韧性恶化等问题。
对于沉淀硬化型不锈钢有焊接热影响区发生软化等问题。
晶间腐蚀英文名称 :
intergranular
corrosion;intercrystalline corrosion
说明:
局部腐蚀的一种。
沿着金属晶粒间的分界面向内部扩展的腐蚀。
主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。
晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。
而且腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,
力学性能恶化, 不能经受敲击,所以是一种很危险的腐蚀。
通常出现于黄铜、硬铝合金和一些不锈钢、镍基合中。
不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。
不锈钢的晶间腐蚀:
不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。
产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。
晶间腐蚀可以分别产生在焊接接头的热影响区 (HAZ) 、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀线腐蚀 (KLA) 。
不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。
当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。
因为室温时碳在奥氏体中的溶解度很小,约为0.02%0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如CrFe23C6等。
数据表明,铬沿晶界扩散的活化能力162252KJ/mol,而铬由晶粒内扩散活化能约540KJ/mol,即:
铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。
不锈钢的敏化及预防措施含碳量超过0.03%的不稳定的奥氏体型不锈钢即不含钛或铌的0Cr18Ni9不锈钢,如果热处理不当则在某些环境中易产生晶间腐蚀。
这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。
这样的热处理造成碳化物在晶界沉淀敏化作用,并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。
敏化作用也可出现在焊接时,在焊接热影响区造成其后的局部腐蚀。
最通用的检查不锈钢敏感性的方法是65%硝酸腐蚀试验方法。
试验时将钢试样放入沸腾的65%硝酸溶液中连续48h为一个周期,共5个周期,每个周期测定重量损失。
一般规定,5个试验周期的平均腐蚀率应不大于0.05mm/月。
奥氏体型不锈钢焊接结构的晶间腐蚀可用如下方法预防:
①使用低碳牌号00Cr19Ni10(304L)或00Cr17Ni14Mo2(316L),或稳定的牌号0Cr18Ni11Ti(321,多见于欧洲)或0Cr18Ni11Nb(347,多见于美国).使用这些牌号不锈钢可防止焊接时碳化物沉淀出造成有害影响的数量。
②如果结构件小,能够在炉中进行热处理,则可在1040-1150℃进行热处理以溶解碳化铬,并且在425-815℃区间快速冷却以防止碳的沉淀。
焊接铁素体不锈钢在某些介质中也可能出现晶间腐蚀。
这是当钢从925℃以上快速冷却时,碳化物或氧化物沉淀,金属晶格应变造成的,焊接后进行消除应力热处理可消除应力并恢复耐腐蚀性能。
在1Cr17不锈钢中加入超过8
倍碳含量的钛,通常可减少焊接钢结构在一些介质中的晶间腐蚀。
然而加入钛在浓硝酸中不是有效的。
晶间腐蚀 intercrystalline corrosion;intergranular
corrosion 是一种常见的局部腐蚀。
腐蚀沿着金属或合金的晶粒边界或它的邻近区域发展,晶粒本身腐蚀很轻微,这种腐蚀便称为晶间腐蚀。
这种腐蚀使晶粒间的结合力大大削弱,严重时可使机械强度完全丧失。
例如遭受这种腐蚀的不锈钢,表面看起来还很光亮,但经不起轻轻敲击便破碎成细粒。
由于晶间腐蚀不易检查,所以廷民设备的突然破十,它的危害性很大。
不锈钢、镍基合金、铝合金、镁合金等都是晶间腐蚀敏感性高的材料。
在受热情况下使用或焊接过程都会造成晶间腐蚀的问题。
以晶间腐蚀为起源,在应力和介质的共同作用下,可使不锈钢、铝合金等诱发晶间应力腐蚀,所以晶间腐蚀有时是应力腐蚀的先导。
在通常腐蚀条件下,钝化合金组织中的晶界活性不大,但当它具有晶间腐蚀的敏感性时,晶间活性很大,即晶格粒与晶界之间存在着一定的电位差,这主要是合金在受热不当时,组织发生改变而引起的。
所以晶间腐蚀是一种由组织电化学不均匀性引起的局部腐蚀蚀。
此外晶界存在杂质时,在一定介质也也会引起晶间腐蚀。
至于具体腐蚀原因和过程,则依不同的合金而异。
18-8奥氏体不锈钢在500800摄氏度温度范围内加热后,变得敏化,易于发生晶间腐蚀,几乎一致认为,奥氏体不锈钢晶间腐蚀的理论是基于晶界贫铬。
普通的18-8不锈钢,一般含碳量为0.060.08。
当含碳量约为0.02或更高时,在500800摄氏度范围内,Cr23C6实际上不固溶,并从固体中沉淀出来,结果使与晶界临近的金属中的铬含量降低,贫铬区发生腐蚀。
防止或减缓晶间腐蚀的措施:
A.选用抗晶间腐蚀的合金;
B.选择合适的热处理工艺,如铝合金过时效处理
C.在确定焊接工艺,铝合金胶接及铣切工艺,回避容易产生晶间腐蚀的温度下处理。
不锈钢的晶间腐蚀:
不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。
产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。
晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。
不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。
当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。
因为室温时碳在奥氏体中的熔解度很小,约为0.02%0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如CrFe23C8等。
但是由于铬的扩散速度较小,来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。
不锈钢晶间腐蚀问题2008-05-04 15:
21晶间腐蚀是金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。
这种腐蚀是在金属合金表面无任何变化的情况下,使晶粒间失去结合力,金属强度完全丧失,导致设备突发性破坏。
许多金属合金都具有晶间腐蚀倾向。
其中不锈钢、铝合金及含钼的镍基合金晶间腐蚀较为突出。
如有应力存在,由晶间腐蚀转变为沿晶应力腐蚀破坏。
贫化理论认为,晶间腐蚀是由于晶界析出新相,造成晶界附近某一成分的贫乏化。
如奥氏体不锈钢回火过程中400-800℃过饱和碳部分或全部以Cr23C6形式在晶界析出,造成碳化物附近的碳与铬的浓度急剧下降,在晶界上形成贫铬区,
贫铬区作为阳极而遭受腐蚀。
对于低碳和超低碳不锈钢来说,不存在碳化物在晶界析出引起贫铬的条件。
但一些实验表明,低碳,甚至超低碳不锈钢,特别是高铬、钼钢,在650-850℃受热时,在强氧化介质中,或其电位处于过钝化区时,
也发生晶间腐蚀。
铁素体不锈钢在900℃以上高温区快冷淬火或空冷易产生晶间腐蚀。
即使极低碳、氮含量的超纯铁素体不锈钢也难免产生晶间腐蚀。
但在700-800℃重新加热可消除晶间腐蚀。
由此可见,铁素体不锈钢焊后在焊缝金属和熔合线处易产生晶间腐蚀。
18Cr-9Ni钢在温度高于750℃时,不产生晶间腐蚀,
而在600-700℃区间,晶间腐蚀倾向最严重。
当温度低于600℃时,需长时间才能产生晶间腐蚀倾向,温度低于450℃时基本不产生晶间腐蚀倾向。
检验某种钢材是否有晶间腐蚀倾向,一般采用敏化处理工艺。
钢材加热到晶间腐蚀最敏感的,恒温处理一定时间,这种处理工艺称为敏化处理,产生晶间腐蚀最敏感的温度叫敏化温度。
18-8不锈钢最敏感温度为650-700℃,产生晶间腐蚀倾向所需要的最短时间为1-2小时。
不锈钢中,除了主要成分Cr、Ni、C外,还含有Mo、Ti、Nb等合金元素。
它们晶间腐蚀的作用如下:
1 碳:
奥氏体不锈钢中碳量越高,晶间腐蚀倾向越严重,导致晶间腐蚀碳的临界浓度为0.02%质量分数。
2 铬:
能提高不锈钢耐晶间腐蚀的稳定性。
当铬含量较高时,允许增加钢中含碳量。
例如,当不锈钢中铬的质量分数从18%提高到22%时,碳的质量分数允许从0.02%增加到0.06%。
3 镍:
增加不锈钢晶间腐蚀敏感性。
可能与镍降低碳在奥氏体钢中的溶解度有关。
4 钛、铌:
都是强碳化物生成元素,高温时能形成稳定的碳化物TiC及
NbC,减少了碳的回火析出,从而防止了铬的贫化。
防止晶间腐蚀的措施:
1降低含碳量。
当钢中碳的质量分数在0.03%以下时,即使在700℃较长时间回火也不会产生晶间腐蚀。
2加入固定碳的合金元素。
对含Ti、Nb元素的18-8不锈钢,在高温下使用时,要经过稳定化处理。
即在常规的固溶处理后,还要在850-900℃保温1-4小时,然后空冷至室温,以充分生成TiC及NbC。
3固溶处理。
固溶处理能使碳化物不析出或少析出。
但对含Ti、Nb的不锈钢还要进行稳定化处理。
4采用双相钢。
采用铁素体和奥氏体双相钢有利于抗晶间腐蚀。
由于铁素体在钢中大多沿奥氏体晶界分布,含铬量又较高,因此,在敏化温度受热时,不产生晶间腐蚀。
奥氏体不锈钢的晶间腐蚀(2008-07-01 14:
19:
56)标签:
杂谈分类:
阀门知识1、奥氏作不锈钢在450850℃保温或缓慢冷却时,会出现晶间腐蚀。
合碳量越高,晶间蚀倾向性越大。
此外,在焊接件的热影响区也会出现晶间腐蚀。
这是由于在晶界上析出富Cr的Cr23C6。
使其周围基体产生贫铬区,从而形成腐蚀原电池而造成的。
这种晶间腐蚀现象在铁素体不锈钢中也是存在的。
工程上常采用以下几种方法防止晶间腐蚀:
1降低钢中的碳量,使钢中合碳量低于平衡状态下在奥氏体内的饱和溶解度,即从根本上解决了铬的碳化物Cr23C6在晶界上析出的问题。
通常钢中合碳量降至0.03以下即可满足抗晶间腐蚀性能的要求。
2加入Ti、Nb等能形成稳定碳化物TiC或NbC的元素,避免在晶界上析出Cr23C6,即可防上奥氏体不锈钢的晶间腐蚀。
3通过调整钢中奥氏体形成元素与铁素体形成元素的比例,使其具有奥氏体+铁索体双相组织,其中铁素体占5一12。
这种双相组织不易产生晶间腐蚀。
4采用适当热处理工艺,可以防止晶间腐蚀,获得最佳的耐蚀性。
2、奥氏体不锈钢的应力腐蚀应力主要是拉应力与腐蚀的综合作用所引起的开裂称为应力腐蚀开裂,简称SCCStress Crack Corrosion。
奥氏体不锈钢容易在含氯离子的腐蚀介质中产生应力腐蚀。
当合Ni量达到8一10时,
奥氏体不锈钢应力腐蚀倾向性最大,继续增加含Ni量至4550应力腐蚀倾向逐渐减小,直至消失。
防止奥氏体不锈钢应力腐蚀的最主要途径是加入Si2
4并从冶炼上将N含量控制在0.04以下。
此外还应尽量减少P、S
B.Bi、As
等杂质的含量。
另外可选用A-F双用钢,它在Cl-和OH-介质中对应力腐蚀不敏感。
当初始的微细裂纹遇到铁素体相后不再继续扩展,铁素体含量应在6%左右。
3、奥氏体不锈钢的形变强化单相的奥氏体不锈钢具有良好的冷变形性能,可以冷拔成很细的钢丝,冷轧成很薄的钢带或钢管。
经过大量变形后,钢的强度大力提高,尤其是在零下温区轧制时效果更为显著。
抗拉强度可达2000 MPa
以上。
这是因为除了冷作硬化效果外,还叠加了形变诱发M转变。
奥氏作不锈钢经形变强化后可用来制造不锈弹簧、钟表发条、航空结构中的钢丝绳等。
形变后若需焊接,则只能采用点焊工艺、形变使应力腐蚀倾向性增加。
并因部分γ->M
转变而产生铁磁性,在使用时如仪表零件中应予以考虑。
再结晶温度随形变量而改变,当形变量为60时,其再结晶温度降为650℃冷变形奥氏体不锈钢再结晶退火温度为8501050℃,850℃则需保温3h,1050℃时透烧即可,然后水冷。
4、奥氏作不锈钢的热处理奥氏体不锈钢常用的热处理工艺有:
固溶处理、稳定化处理和去应力处理等。
1固溶处理。
将钢加热到10501150℃后水淬,主要目的是使碳化物溶于奥氏体中,并将此状态保留到室温,这样钢的耐蚀性会有很大改善。
如上所述,为了防止晶问腐蚀,通常采用固溶化处理,使Cr23C6溶于奥氏体中,然后快速冷却。
对于薄壁件可采用空冷,一般情况采用水冷。
2稳定化处理。
一般是在固溶处理后进行,常用于含Ti、Nb的18-8
钢,固处理后,将钢加热到850880℃保温后空冷,此时Cr的碳化物完全溶解,
脱而钛的碳化物不完全溶解,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 含量 不锈钢 影响