测试技术课后答案.docx
- 文档编号:2709005
- 上传时间:2023-05-04
- 格式:DOCX
- 页数:23
- 大小:894.48KB
测试技术课后答案.docx
《测试技术课后答案.docx》由会员分享,可在线阅读,更多相关《测试技术课后答案.docx(23页珍藏版)》请在冰点文库上搜索。
测试技术课后答案
第二章
2.1
(1)×频谱离散的信号也可能是准周期信号。
(2)×非周期信号中的瞬态信号的频谱是连续的(3)√
(4)×(5)×(6)×(7)√(8)√(9)√(10)×
(11)什么是频域泄漏?
为什么产生泄漏?
对一个无限周期的正弦信号,采用矩形窗函数在时域对其进行截断,截断后的频谱由原来的两条谱线变为两段振荡的连续谱,这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在±f1处的能量被分散到两个较宽的频带中去,这种现象称为频域泄漏。
原因:
因为窗函数是一个频带无限的函数,所以即使原函数是有限带宽信号,而在截断以后也必然称为无线带宽的函数,即信号在频域的能量与分布被扩展了。
(12)窗函数是否可以减小泄漏?
窗函数可以减小泄漏。
窗函数频谱的旁瓣高度越小,主瓣与旁瓣的比例越大,泄漏越小
(13)什么是栅栏效应?
如何减小栅栏效应的影响?
对频谱函数采样后,只能获得采样点的频率成分,其余的频率成分一概被舍去,这就犹如透过栅栏观赏风景,只能看到一部分,就可能使一部分有用的频率成分被漏掉,而丢掉了部分有用信息,这种现象成为栅栏效应。
要减小栅栏效应,就要提高频率分辨率,即使频率采样间隔减小。
2.2描述周期信号的频率结构可采用什么数学工具?
如何进行描述?
周期信号是否可以进行傅里叶变换?
为什么?
傅里叶级数展开式。
根据具体情况可选择傅里叶级数三角函数展开式和傅里叶级数复指数展开式两种形式。
周期信号不可以直接进行傅里叶级数变换。
因为周期信号不具备收敛可积的条件,其频域描述只能运用傅里叶级数来描述。
2.3
锯齿波信号表达式为(一个周期):
F(t)=t(0 根据傅里叶级数三角函数展开式得: 2.4 解答: 在一个周期的表达式为 积分区间取(-T/2,T/2) 所以复指数函数形式的傅里叶级数为 , 。 没有偶次谐波。 其频谱图如下图所示。 2.5求符号函数和单位阶跃函数的频谱。 其傅里叶变换为: 2.6(图不会) 解: 按傅氏变换的定义求解,因为x(t)是偶函数,傅氏变换为: X(t)的幅值频谱如图所示 2.7求正弦信号 的绝对均值 和均方根值 。 解答: 2.8 解: 已知幅值X=2,频率 ,而在t=0时,x=-1,则将上述参数带入一般表达式 得 = 所以 2.9当模拟信号转换为数字信号时遇到哪些问题? 应怎样解决? 1: 需要给模拟信号整流滤波并给模拟信号稳压确保模拟量的稳定 2: 需要加抗干扰电路 3: 注意静电对元器件的影响 2.11 答: 为保证采样后的信号能真实地保留原始模拟信号信息,信号采样频率必须至少为原信号中最高频率成分的2倍。 这是采样的基本法则,称为采样定理。 采样定理可以保证不发生频率混叠现象。 第三章 3.1 3.2解设拉力F为0N、10N、20N、30N、40N、50N、40N、30N、20N、10N、0N 将表中数据代入式(3.17)的最小二乘法公式中,经计算求得拟合直线方程 最小二乘法拟合公式: 同理: =8 所以,线性度 灵敏度S= 回程误差=3% 3.3 3.4 3.5解: (1)一阶系统的阶跃响应函数为: y(t)=A(1-) 当T=2s时,输出量达到稳态值的20%, 即: A(1-)=20%A求得: τ (2)A(1-)=95%A,求得: t 因此,当输出量达到稳态值的95%时,需要26.84s 3.6解: (1)根据已知条件,炉温的变化规律是: 温度计为一阶系统,其幅频特性: A(ω)=0.2468 当输入为500℃、540℃时,其输出A(ω)*500=123.4℃、 A(ω)*540=133.27℃ 所以温度计的测量结果在123.4℃~133.27℃之间。 (2)输出量与输入量之间的相位差(ω)=-arctanτω=-75.71° (3)该信号周期: T==16s 则滞后时间=3.365s 3.7 3.8答: 测试系统实现不失真测量的条件是A(ω)=,为一个常数,且=ω)∝ω 即滞后时间=,为一个常数 从不失真的条件出发分析,ζ在0.707左右时,幅频特性近似常数的频率围最宽,而相频特性曲线最接近直线。 3.9解: 3.10解: 3.11解: 第四章 4.1传感器在测试系统中的作用是什么? 传感器分类有哪些? 传感器的作用: 把被测量(如力、位移、温服等)转换为易测信号(电信号),传送给测量系统的信号调理环节。 传感器的分类: (1).传感器按所属学科可分为物理型、化学型和生物型传感器等。 物理型传感器是利用各种物理效应,把被测量转换成可处理的物理量参数;化学型传感器是利用化学反应,把被测量转换成可处理的物理量参数;生物型传感器是利用生物效应及机体部分组织、微生物,把被测量转换为可处理的物理量参数。 (2).传感器按转换原理可分为电阻式、电感式、电容式、光电式、热电式、压电式、霍尔式、微波式、激光式、超声式、光纤式及核辐射式传感器。 等 (3).传感器按用途可分为温度、压力、流量、重量、位移、速度、加速度、力、电压、电流、功率传感器等。 (4).传感器按转换过程中的物理现象可分为结构型和物性型传感器等。 结构型传感器是依靠传感器结构参数变化来实现信号的检测。 物性型传感器是利用传感器的敏感元件材料本身物理特性变化实现信号的检测。 (5).传感器按转换过程中的能量关系科分为能量转换型和能量控制型传感器等。 能量转换型传感器是直接利用被测量的能量转换为输出量的能量。 能量控制型传感器是由外部供给传感器能量,而由被测量来控制输出的能量。 (6).传感器输出量的形式可分为模拟式和数字式传感器等。 模拟式传感器输出量为模拟量;数字式传感器输出量为数字量。 (7).传感器按功能可分为传统式和智能式传感器等。 传统型传感器一般是指只具有显示和输出功能的传感器。 智能传感器是指具备学习、推理、感知、通信等功能、具有精度高、性能价格比搞、使用方便等特点的传感器。 (8).传感器按输出参数可分为电阻型、电容型、电感型、互感型、电压(电势)型、电流型、电荷型及脉冲(数字)型传感器等。 (9).传感器按输出阻抗大小可分为低输出阻抗型和高输出阻抗型传感器等。 4.2常用传感器: 机械式传感器、电阻式传感器、电容式传感器、电感式传感器、磁电式传感器、霍尔式传感器、压电式传感器、热电式传感器、光电式传感器、新型半导体传感器、数字式传感器。 4.3简述光敏二极管光敏三极管的工作原理,并举出它们在生产和生活中的实际应用。 光敏二极管光敏三极管的工作原理: 利用光伏特效应。 应用: 路灯自动点熄原理 4.4本章讲述了传感器敏感元件的哪些效应(如压电效应)? 分别说明其原理。 电阻应变效应: 电阻丝在外力的作用下发生变形,其电阻值发生变化。 压阻效应: 半导体材料在沿某一轴向受外力作用时,其电阻率发生变化 涡电流效应: 金属导体在交流磁场中产生电涡流。 压电效应: 在压电晶片上施加压力时,在它的两个极面上会出现极性相反但是电量相等的电荷,使之成为一个电容器。 霍尔效应: 置于磁场中的导体或半导体中流过电流时,,当加入一个与电流方向垂直的磁场时,电荷载流子由于受洛伦兹力的作用而偏向一边,在输出端产生电压,这个现象叫做活儿效应。 光电效应: 1)外光电效应: 在光线的作用下物体的电子逸出物体表面向外发射的物理现象。 2)光电效应: 物体在光线作用下,部载流子浓度增大,使电导率增大的现象称为光电效应,也成为光电导效应。 3)光伏特效应: 物体在光线作用下,产生一定方向电动势的现象称为半导体光伏特效应 热电效应: 将两种不同材料的导体组成一个闭合回路,,在这个回路中,两个节点如果温度不同,则会在二者之间产生一电动势,回路中就会产生一定大小的电流,这个电动势或电流与两种导体的性质和节点的温差有关,这个现象称为热电效应。 4.5选用传感器的基本原则是什么? 传感器的灵敏度和精确度越高越好吗? 为什么? 选用传感器的基本原则 1灵敏度: 1)一般来讲传感器的灵敏度越高越好。 当传感器的灵敏度高时,被测量有一微小的变化,传感器就有较大的输出。 2)灵敏度越大,外界的噪声也越容易混入。 故要检测微小量值,又要干扰小,则要求信噪比越大越好。 3)当被测量是个向量时,则要求传感器在该方向上的灵敏度越高越好。 在测量二维或三维向量时,要求传感器的交叉灵敏度越小越好。 4)和灵敏度紧密相关的是测量围。 除非有专门的非线性矫正措施,最大输入量(被测量和干扰量之和)不应使传感器进入非线性区域,更不能进入饱和区。 显然,过高的灵敏度会缩小其运用的测量围。 2响应特性 1)在所测量的频率围,传感器的响应特性必须满足不失真测试条件。 2)响应的延迟时间越短越好。 3)物性型传感器(光敏元件、霍尔元件等)响应快,可工作频率围宽。 结构型传感器(机械式、电感式、电容式等)由于结构中机械系统惯性的限制,其固有频率低,可工作频率较低。 4)动态测试中,传感器的响应特性对测试结果有直接影响。 如果传感器的输出信号能紧紧追踪急速变化的输入信号,则传感器的响应特性就越好。 因此,选用时要充分考虑到被测量的变化特点(如稳态、瞬态、随机等)。 3线性围 1)线性围是指输入与输出成比例关系的围。 2)线性围越宽,表明传感器的工作量程越大。 3)传感器在线性区域工作,是保证测量精确度的基本条件。 4)任何传感器在任一区域都保持绝对线性关系是不易做到的,只要能满足测量的精确度,可以在其近似线性区域应用。 5)必要时,可进行非线性补偿,采用硬件或软件进行。 6)若输入与输出之间不是线性关系,但已知其确定规律,可用软件储存好曲线再查找或查表法。 4可靠性 1)可靠性是指产品在规定的条件下、在规定的时间完成规定功能的能力。 2)只有产品的性能参数(尤其是主要参数)均处于规定的误差围才能视为完成规定的功能。 3)为保证传感器在应用中具有高的可靠性,事先应选用设计、制造良好、使用条件适宜的传感器,使用过程中,应严格保持规定的使用条件,尽量减轻使用条件的不良的影响。 4)要根据测试的要求及经济性来选用相应可靠性的产品。 5精确度 1)传感器的精确度表示传感器的输入与被测量的真值相一致的程度。 2)因传感器处于测试系统的输入端,故传感器的精确度对这个系统的影响很大。 3)并非精确度越高越好,还应考虑到经济性。 4)对于定性分析,只须获得相对比较值,不须绝对量值,则要求传感器的精密度高。 5)对于定量分析,必须要获得精确度值,要求传感器有足够高的精确度 6稳定性 1)稳定性表示传感器经长期使用后,其输出特性不发生变化的性能。 2)影响传感器稳定性的因素是时间与环境。 3)为保证稳定性,在选用传感器之前,应对使用环境进行调查,以选择比较合适的传感器的类型: 在使用中要定期校准,对传感器做出适当调整,或采取相应的补偿措施。 7测量方式 1)测量方式是指传感器在实际条件下的工作方式,如接触与非接触测量,在线与非在线测量,破坏性检验与非破坏性检验。 2)工作方式不同队传感器的要求也不同。 8与后续电路仪器的匹配如阻抗匹配、负载效应等。 9其他: 体积、重量、价格、是否携带方便等。 灵敏度和精确度不是越高越好,过高的灵敏度会缩小测量围,而精密度反映了随机误差的大小。 第五章 5.1一阻值为R=120Ω、灵敏度S=2的电阻丝应变片与阻值为120Ω的固定电阻组成电桥,供电电压为3V。 假定负载电阻无穷大,当应变片为2με和2000με时,分别求出半桥单臂、半桥双臂电桥的输出电压,并比较两种电桥的灵敏度。 解: 这是一个等臂电桥,可以利用等比电桥和差特性表达式求解。 ε=2με时: 单臂输出电压: 双臂输出电压: ε=2000με时: 单臂输出电压: 双臂输出电压: 双臂电桥较单臂电桥灵敏度高1倍。 5.2电桥的电压灵敏度为 ,即电桥的输出电压 和电阻的相对变化成正比。 由此可知: (1)半桥双臂各串联一片,虽然桥臂上的电阻变化增加1倍,但桥臂总电阻也增加1倍,其电阻的相对变化没有增加,所以输出电压没有增加,故此法不能提高灵敏度; (2)半桥双臂各并联一片,桥臂上的等效电阻变化和等效总电阻都降低了一半,电阻的相对变化也没有增加,故此法也不能提高灵敏度。 5.3 (1)a图中,应变片应接在相对桥臂上;b图中,应变片应接在相邻桥臂上。 (2)a图中,应使所贴的应变片温度尽量一致;或其余两臂用温度补偿片,即用与工作应变片完全相同的应变片作为温度补偿片,贴在一块与被测构件材料相同、但不受力的材料快上,将此补偿块与被测构件放置在一起,使它们处于同一温度场中 b图是半桥双臂连接,是差动电桥,可以自动进行温度补偿,消除温度变化的影响 5.4全桥连接时,电桥输出 所以 电阻应变片的灵敏度 所以 5.5交流电桥平衡的条件是 即 对于R1、R2来说相位角等于0,电容的相位角为-90度,电感的相位角为90度,所以俩电阻应放在电桥的对臂上,电感与电容应放在另外两个对臂上,如图 5.6b更合理,因为对于a图来说,当R1有一负变化 时,若 则无法测出输出。 5.7滤波器的分辨力是指滤波器分辨相邻频率成分的能力。 与滤波器带宽B、品质因数Q、倍频程选择性、滤波器因数等有关。 带宽越小、品质因数越大、倍频程选择性越小、滤波器因数越小,分辨力越高。 5.81000Hz正弦波 5.9 (1)错误。 倍频程滤波器n=1,正确的是fc2=21fc1=2fc1。 (2)正确。 (3)正确。 (4)正确。 5.10解: τ1=R1C1,τ2=R2C2,τ3=R1C2 A(0)=0,ϕ(0)=π/2;A(∞)=0,ϕ(∞)=-π/2,可以组成带通滤波器,如下图所示。 5.11 5-12已知调幅波xa(t)=(100+30cosΩt+20cos3Ωt)cosωct,其中fc=10kHz,fΩ=500Hz。 试求: 1)xa(t)所包含的各分量的频率及幅值; 2)绘出调制信号与调幅波的频谱。 解: 1)xa(t)=100cosωct+15cos(ωc-Ω)t+15cos(ωc+Ω)t+10cos(ωc-3Ω)t+10cos(ωc+3Ω)t 各频率分量的频率/幅值分别为: 10000Hz/100,9500Hz/15,10500Hz/15,8500Hz/10,11500Hz/10。 2)调制信号x(t)=100+30cosΩt+20cos3Ωt,各分量频率/幅值分别为: 0Hz/100,500Hz/30,1500Hz/20。 调制信号与调幅波的频谱如图所示。 5.13调幅波是否可以看作是载波与调制信号的迭加? 为什么? 解答: 不可以。 因为调幅波是载波幅值随调制信号大小成正比变化,只有相乘才能实现。 5.14带宽1000Hz10100--105009500--9900 5.15 5-16相敏检波电路与包络检波电路在功能和电路构成上最主要的区别是什么? 相敏检波电路与包络检波电路在功能上的主要区别是: 相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向。 同时,相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。 从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号,有了参考信号就可以用它来鉴别输入信号的相位和频率。 第六章 6-1 6-2 6.2 6-3 6-4 6-5 6-6 第七章 7-1常见的位移传感器有哪些,各有什么特点? 答: 电感式位移传感器: (1)结构简单,无活动电接触点,工作可靠,寿命长 (2)灵敏度高,分辨率高,输出信号强 (3)电压灵敏度高 (4)重复性好,线性度优良,能实现信息的远距离传输、记录、显示和控制 (5)不适用于高频动态测量,对激励电流的频率和幅值稳定性要求较高 电涡流式位移传感器: (能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离 光电式位移传感器: 将被测机械位移量转换为光量的变化,再通过光电元件把光量变化转换为电信号,属于非接触式测量,并且可以进行连续测量。 7.2位移测量的基本方法有哪些? 答: 电气式位移测量法,光电式位移测量法,机械式位移测量法,转换法 7.3简述基于PSD光电式位移传感器的工作原理。 答: 当入射光照射到PSD的光敏层上时,在入射的位置上就会产生与光能成正比的电荷,此电荷以光电流的形式通过电阻层由电极输出。 7.4简述光纤陀螺测量角速率的基本原理及工作过程。 答: (1)基本原理: 基于萨格奈克效应。 (2)工作过程: 由宽频带光源提供的光被分成两束,分别沿两个相反方向在光纤线圈中传播,当两束光在入射点出汇合时将发生光的干涉效应。 当线圈静止时,正反两个方向传播的两束光的光程差相同,不存在相位差,干涉条纹的光强将发生不发生变化。 但是当光纤线圈绕垂直于自身的轴旋转,与旋转方向相同的光路光程要比逆旋转方向传播的光束走的光程大一些,由此引起的相位差将导致干涉条纹的光强发生变化。 相位差的大小与线圈的转速成正比,并且相位差与干涉条纹的光强之间存在确定的函数关系,通过用光电探测器对于干涉光光强进行检测,可以实现线圈旋转速率的测量。 7.5速度测量的常见方法主要有哪些? 答: 微积分法,线速度和角速度相互转换测速法,速度传感器法,时间、位移计算测速法。 第八章
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 测试 技术 课后 答案