中考压轴题分类之分类讨论经典题型11页Word格式.docx
- 文档编号:3059244
- 上传时间:2023-05-01
- 格式:DOCX
- 页数:11
- 大小:134.84KB
中考压轴题分类之分类讨论经典题型11页Word格式.docx
《中考压轴题分类之分类讨论经典题型11页Word格式.docx》由会员分享,可在线阅读,更多相关《中考压轴题分类之分类讨论经典题型11页Word格式.docx(11页珍藏版)》请在冰点文库上搜索。
函数图象未给出;
函数对称性(反比例函数的图象,二次函数)
2、几何类:
几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等;
3、综合类:
代数与几何分类情况的综合运用.
一、代数类专练
例1.代数式
的所有可能的值有()
A.2个B.3个C.4个D.无数个
例2:
化简:
|x-1|+|x-2|
例3:
代数式
例4.一次函数
时,对应的y值为
,则kb的值是()。
A.14B.
C.
或21D.
或14
例5已知一次函数
与x轴、y轴的交点分别为A、B,试在x轴上找一点P,使△PAB为等腰三角形。
例6.为了鼓励城市周边的农民的种菜的积极性,某公司计划新建A,B两种温室80栋,将其中售给农民种菜.该公司建设温室所筹资金不少于209.6万元,但不超过210.2万元.且所筹资金全部用于新建温室.两种温室的成本和出售价如下表:
A型
B型
成本(万元/栋)
2.5
2.8
出售价(万元/栋)
3.1
3.5
(1)这两种温室有几种设计方案?
(2)根据市场调查,每栋A型温室的售价不会改变,每栋B型温室的售价可降低m万元(0<m<0.7)且所建的两种温室可全部售出.为了减轻菜农负担,试问采用什么方案建设温室可使利润最少.
例7.如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?
如果有,请你求出最大值和此时剪去的正方形的边长;
如果没有,请你说明理由;
(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;
如果没有,请你说明理由.
二、几何类专练
1、若等腰三角形中有一个角等于50°
,则这个等腰三角形的顶角的度数为()
A.50°
B.80°
C.65°
或50°
D.50°
或80°
2、某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()
A.9cmB.12cmC.15cmD.12cm或15cm
3、如图,在直角梯形ABCD中,AD∥BC,∠B=90°
,AD=6cm,AB=8cm,BC=14cm.动点P、Q都从点C出发,点P沿C→B方向做匀速运动,点Q沿C→D→A方向做匀速运动,当P、Q其中一点到达终点时,另一点也随之停止运动.
(1)求CD的长;
(2)若点P以1cm/s速度运动,点Q以2
cm/s的速度运动,连接BQ、PQ,设△BQP面积为S(cm2),点P、Q运动的时间为t(s),求S与t的函数关系式,并写出t的取值范围;
(3)若点P的速度仍是1cm/s,点Q的速度为acm/s,要使在运动过程中出现PQ∥DC,请你直接写出a的取值范围.
4、如图,在直角梯形ABCD中,AD∥BC,∠C=900,BC=16,DC=12,AD=21,动点P从D出发,沿射线DA的方向以每秒2个单位长度的速度运动,动点Q从点C出发,经线段CB上以每秒1个单位长度的速度向点B运动,点P、Q分别从D、C同时出发,当点Q运动到点B时,点P随之停止运动。
设运动时间为
秒。
⑴设△BPQ的面积为S,求S与
之间的函数关系式。
⑵当
为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?
5、
(1)如图1,在△ABC中,点D.E.Q分别在ABACBC上,且DE∥边长,AQ交DE于点P,求证:
=
;
(2)如图,△ABC中,∠BAC=90°
,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证:
MN2=DM•EN.
6、如图
(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º
,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图
(2)
(1)问:
始终与△AGC相似的三角形有及;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图
(2)的情形说明理由)
(3)问:
当x为何值时,△AGH是等腰三角形.
7、如图,在四边形ABCD中,∠BAC=∠ACD=90°
,∠B=∠D.
(1)求证:
四边形ABCD是平行四边形;
(2)若AB=3cm,BC=5cm,AE=
AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?
8、数学课上,李老师出示了如下框中的题目.
在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况•探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:
AE DB(填“>”,“<”或“=”).
(2)特例启发,解答題目
解:
题目中,AE与DB的大小关系是:
AE DB(填“>”,“<”或“=”).理由如下:
如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).
9、如图①,在矩形ABCD中,将矩形折叠,使点B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于点F,然后展开铺平,则以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”一定是一个_________三角形;
(2)如图②,在矩形ABCD中,AB=2,BC=4.当它的“折痕△BEF”的顶点E位于边AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)如图③,在矩形ABCD中,AB=2,BC=4.该矩形是否存在面积最大的“折痕△BEF”?
若存在,说明理由,并求出此时点E的坐标;
若不存在,为什么?
10、如图,矩形ABCD中,AB=6,BC=2
,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;
另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?
若存大,求出对应的t的值;
若不存在,请说明理由.
11、如图,在平面直角坐标系中,直线
分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;
同时,动点M从点A出发,沿线段AB以每秒
个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①若△MPH与矩形AOCD重合部分的面积为1,求t的值;
②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值,如果有,求出相应的点P的坐标;
如果没有,请说明理由.
12、已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD.BC于点E.F,垂足为O.
(1)如图1,连接AF.CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P.Q分别从A.C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A.C.P.Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P.Q的运动路程分别为a.b(单位:
cm,ab≠0),已知A.C.P.Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
13、如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°
后得到△OCD.
(1)填空:
点C的坐标是( , ),点D的坐标是( , );
(2)设直线CD与AB交于点M,求线段BM的长;
(3)在y轴上是否存在点P,使得△BMP是等腰三角形?
若存在,请求出所有满足条件的点P的坐标;
14.如图所示,在平行四边形ABCD中,
,
∠A=60°
,BD⊥AD,一动点P从A出发,以每秒1cm的速度沿
的路线匀速运动,过点P作直线PM,使PM⊥AD.
(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
(2)当点P运动2秒时,另一动点Q也从A出发沿
的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN//PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为Scm2.
①求S关于t的函数关系式;
②(附加题)求S的最大值.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 压轴 分类 讨论 经典 题型 11