利用三角形全等测距离.docx
- 文档编号:4122364
- 上传时间:2023-05-06
- 格式:DOCX
- 页数:6
- 大小:2.19MB
利用三角形全等测距离.docx
《利用三角形全等测距离.docx》由会员分享,可在线阅读,更多相关《利用三角形全等测距离.docx(6页珍藏版)》请在冰点文库上搜索。
课题
1.5利用三角形全等测距离
课型
新授
授课班级
七一、七三
授课时间
教
学目标
1、知识与技能
利用几何画板设计模拟实验验证实验方案的准确性,再引导学生推理验证方案的准确性
2、过程与方法
体现了验证实验方案的逻辑过程:
“猜想-实验-推理
3、情感态度价值观
通过猜想、实验、证明等数学活动充分激发了学生学习兴趣.
教学重点:
能利用三角形的全等解决实际问题
教学难点:
设计方案解决利用三角形的全等侧距离的实际问题
教具、学具:
导学案、三角板
教学内容
教学过程
所有的文字都是仿宋,4号(含知识点、教学方法、预设解决问题方案等)
一.回顾思考
1、三边对应相等的两个三角形全等,简写为___________或__________;
2、两角和它们的夹边对应相等的两个三角形全等,简写成_______或_________;
3、两角和其中一角的对边对应相等的两个三角形全等,简写成_______或_______;
4、两边和它们的夹角对应相等的两个三角形全等,简写成_______或_______;
二.小组合作探究①操作实验及实验分析数据统计:
引入:
一位经历过战争的老人讲述的一个故事,配合简图如下:
按战士这个方法,找出教室或操场上与你距离相等的两个点,并通过测量加以验证。
E
B
F
D
C
A
1.设计实验步骤:
2.实验数据统计:
数据
测量次数
侦查员与测试点间的距离(m)
侦查员与碉堡间的距离
(m)
误差(m)
①
②
③
3.实验原理探究
为什么侦查员与测试点间的距离恰好就是侦查员与碉堡间的距离?
你能用几何推理的方法解释其中的道理吗?
E
B
F
D
C
A
二.阅读探究,模拟实验
如图:
A、B两点分别位于一个池塘的两端,小明想测量A,B间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:
先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到E,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出它的长度,DE的长度就是A,B间的距离?
三,推理验证,调理思路
你能用几何推理的方法解释其中的道理吗?
已知:
直线AD、BE交于点C,________,
_________,
求证:
AB=DE
证明:
四.小组合作探究②,思维拓展,设计实验方案.
(1)如图,一座大楼相邻两面墙,现需要测量外墙根部两点A,B之间的距离(人不能进入墙内测量)请你设计一个方案测量A,B的距离
①画出测量图案;②说明理由.
五.小结
利用三角形全等测距离的目的是把_______距离等量转化为_____________
六.延伸思考发散思维
1.如图,要量河两岸相对两点A、B的距离,方法①:
可以在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DF,使A、C、E在一条直线上,这时测得DE的长就是AB的长,试说明理由.
2.方法②可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,且使E,C,A在同一条直线上,则DE的长就是A,B之间的距离,请你说明理由。
3.如图,A,B两点分别位于一个池塘的两端,完成下图并求出A、B的距离
作业设计:
配套1.5
板书设计:
1.5利用三角形全等测距离
作图
反思
二次备课
二次反思
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用 三角形 全等 测距