广东省深圳市罗湖区华英学校人教版七年级数学培优讲义无答案第13讲 平行线的性质及其应用.docx
- 文档编号:9108388
- 上传时间:2023-05-17
- 格式:DOCX
- 页数:17
- 大小:217.19KB
广东省深圳市罗湖区华英学校人教版七年级数学培优讲义无答案第13讲 平行线的性质及其应用.docx
《广东省深圳市罗湖区华英学校人教版七年级数学培优讲义无答案第13讲 平行线的性质及其应用.docx》由会员分享,可在线阅读,更多相关《广东省深圳市罗湖区华英学校人教版七年级数学培优讲义无答案第13讲 平行线的性质及其应用.docx(17页珍藏版)》请在冰点文库上搜索。
广东省深圳市罗湖区华英学校人教版七年级数学培优讲义无答案第13讲平行线的性质及其应用
第13讲平行线的性质及其应用
考点·方法·破译
1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系;
2.初步了解命题,命题的构成,真假命题、定理;
3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.
经典·考题·赏析
【例1】如图,四边形ABCD中,AB∥CD,BC∥AD,∠A=38°,求∠C的度数.
【解法指导】
两条直线平行,同位角相等;
两条直线平行,内错角相等;
两条直线平行,同旁内角互补.
平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.
【解】:
∵AB∥CDBC∥AD
∴∠A+∠B=180°∠B+∠C=180°(两条直线平行,同旁内角互补)
∴∠A=∠C∵∠A=38°∴∠C=38°
【变式题组】
01.如图,已知AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()
A.155°B.50°C.45°D.25°
02.(安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()
A.50°B.55°C.60°D.65°
03.如图,已知FC∥AB∥DE,∠α:
∠D:
∠B=2:
3:
4,试求∠α、∠D、∠B的度数.
【例2】如图,已知AB∥CD∥EF,GC⊥CF,∠B=60°,∠EFC=45°,求∠BCG的度数.
【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.
【解】∵AB∥CD∥EF∴∠B=∠BCD∠F=∠FCD(两条直线平行,内错角相等)又∵∠B=60°∠EFC=45°∴∠BCD=60°∠FCD=45°又∵GC⊥CF∴∠GCF=90°(垂直定理)∴∠GCD=90°-45°=45°∴∠BCG=60°-45°=15°
【变式题组】
01.如图,已知AF∥BC,且AF平分∠EAB,∠B=48°,则∠C的的度数=_______________
02.如图,已知∠ABC+∠ACB=120°,BO、CO分别∠ABC、∠ACB,DE过点O与BC平行,则∠BOC=___________
03.如图,已知AB∥MP∥CD,MN平分∠AMD,∠A=40°,∠D=50°,求∠NMP的度数.
【例3】如图,已知∠1=∠2,∠C=∠D.求证:
∠A=∠F.
【解法指导】
因果转化,综合运用.
逆向思维:
要证明∠A=∠F,即要证明DF∥AC.
要证明DF∥AC,即要证明∠D+∠DBC=180°,
即:
∠C+∠DBC=180°;要证明∠C+∠DBC
=180°即要证明DB∥EC.要证明DB∥EC即要
证明∠1=∠3.
证明:
∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3∴DB∥EC(同位角相等•两直线平行)∴∠DBC+∠C=180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠DBC+∠D=180°∴DF∥AC(同旁内角,互补两直线平行)∴∠A=∠F(两直线平行,内错角相等)
【变式题组】
01.如图,已知AC∥FG,∠1=∠2,求证:
DE∥FG
02.如图,已知∠1+∠2=180°,∠3=∠B.求证:
∠AED=∠ACB
03.如图,两平面镜α、β的夹角θ,入射光线AO平行
于β入射到α上,经两次反射后的出射光线O′B平行
于α,则角θ等于_________.
【例4】如图,已知EG⊥BC,AD⊥BC,∠1=∠3.
求证:
AD平分∠BAC.
【解法指导】抓住题中给出的条件的目的,仔细分析
条件给我们带来的结论,对于不能直接直接得出结论
的条件,要准确把握住这些条件的意图.(题目中的:
∠1=∠3)
证明:
∵EG⊥BC,AD⊥BC∴∠EGC=∠ADC=90°
(垂直定义)∴EG∥AD(同位角相等,两条直线平行)
∵∠1=∠3∴∠3=∠BAD(两条直线平行,内错角相等)
∴AD平分∠BAC(角平分线定义)
【变式题组】
01.如图,若AE⊥BC于E,∠1=∠2,求证:
DC⊥BC.
02.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE平分∠ACB.求证:
∠EDF=∠BDF.
3.已知如图,AB∥CD,∠B=40°,CN是∠BCE的平分线.CM⊥CN,求:
∠BCM的度数.
【例5】已知,如图,AB∥EF,求证:
∠ABC+∠BCF+∠CFE=360°
【解法指导】从考虑360°这个特殊角入手展开联想,分析类比,
联想周角.构造两个“平角”或构造两组“互补”的角.
过点C作CD∥AB即把已知条件AB∥EF联系起来,这是关键.
【证明】:
过点C作CD∥AB∵CD∥AB∴∠1+∠ABC=180°
(两直线平行,同旁内角互补)又∵AB∥EF,∴CD∥EF(平行
于同一条直线的两直线平行)∴∠2+∠CFE=180°(两直线平行,
同旁内角互补)∴∠ABC+∠1+∠2+∠CFE=180°+180°=360°
即∠ABC+∠BCF+∠CFE=360°
【变式题组】
01.如图,已知,AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性.
结论:
⑴____________________________⑵____________________________
⑶____________________________⑷____________________________
【例6】如图,已知,AB∥CD,则∠α、∠β、∠γ、∠ψ之间的关系是
∠α+∠γ+∠ψ-∠β=180°
【解法指导】基本图形
善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路.
【解】过点E作EH∥AB.过点F作FG∥AB.∵AB∥EH∴∠α=∠1(两直线平行,内错角相等)又∵FG∥AB∴EH∥FG(平行于同一条直线的两直线平行)∴∠2=∠3又∵AB∥CD∴FG∥CD(平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°
【变式题组】
01.如图,AB∥EF,∠C=90°,则∠α、∠β、∠γ的关系是()
A.∠β=∠α+∠γB.∠β+∠α+∠γ=180°
C.∠α+∠β-∠γ=90°D.∠β+∠γ-∠α=90°
02.如图,已知,AB∥CD,∠ABE和∠CDE的平分线相交于点F,∠E=140°,求∠BFD的度数.
【例7】如图,平移三角形ABC,设点A移动到点A/,画出平移后的三角形A/B/C/.
【解法指导】抓住平移作图的“四部曲”——定,找,移,连.
⑴定:
确定平移的方向和距离.
⑵找:
找出图形的关键点.
⑶移:
过关键点作平行且相等的线段,得到关键点的对应点.
⑷连:
按原图形顺次连接对应点.
【解】①连接AA/②过点B作AA/的平行线l③在l截取BB/=AA/,则点B/就是的B对应点,用同样的方法作出点C的对应点C/.连接A/B/,B/C/,C/A/就得到平移后的三角形A/B/C/.
【变式题组】
01.如图,把四边形ABCD按箭头所指的方向平移21cm,作出平移后的图形.
02.如图,已知三角形ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平移到△A/B/C/的位置,若平移距离为3,求△ABC与△A/B/C/的重叠部分的面积.
03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC方向平移BE的距离,就得到此图形,求阴影部分的面积.(单位:
厘米)
演练巩固反馈提高
01.如图,由A测B得方向是()
A.南偏东30°B.南偏东60°
C.北偏西30°D.北偏西60°
02.命题:
①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有()
A.1个B.2个C.3个D.4个
03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是()
A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°
C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐60°,第二次向左拐120°
04.下列命题中,正确的是()
A.对顶角相等B.同位角相等C.内错角相等D.同旁内角互补
05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]
从图中可知,小敏画平行线的依据有()
①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.
A.①②B.②③C.③④D.①④
06.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()
A.北偏东52°B.南偏东52°C.西偏北52°D.北偏西38°
07.下列几种运动中属于平移的有()
①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.
A.1种B.2种C.3种D.4种
08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)
09.观察图,哪个图是由图⑴平移而得到的()
10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移.平移方向为射线AD的方向.平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.
11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.
⑴对顶角是相等的角;⑵相等的角是对顶角;
⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.
12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.
⑴互补的角是邻补角;
⑵两个锐角的和是锐角;
⑶直角都相等.
13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B=150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?
并说明理由.
14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角.当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系.你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?
15.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.
培优升级·奥赛检测
01.如图,等边△ABC各边都被分成五等分,这样在△ABC内能与△DEF完成重合的小三角形共有25个,那么在△ABC内由△DEF平移得到的三角形共有()个
02.如图,一足球运动员在球场上点A处看到足球从B点沿着BO方向匀速滚来,运动员立即从A处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移)
03.如图,长方体的长AB=4cm,宽BC=3cm,高AA1=2cm.将AC平移到A1C1的位置上时,平移的距离是___________,平移的方向是___________.
04.如图是图形的操作过程(五个矩形水平方向的边长均为a,竖直方向的边长为b);将线段A1A2向右平移1个单位得到B1B2,得到封闭图形A1A2B2B1[即阴影部分如图⑴];将折现A1A2A3向右平移1个单位得到B1B2B3,得到封闭图形A1A2A3B3B2B1[即阴影部分如图⑵];
⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.
⑵请你分别写出上述三个阴影部分的面积S1=________,S2=________,S3=________.
⑶联想与探究:
如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?
05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为()
A.720°B.108°或144°C.144°D.720°或144°
06.两条直线a、b互相平行,直线a上顺次有10个点A1、A2、…、A10,直线b上顺次有10个点B1、B2、…、B9,将a上每一点与b上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是()
A.90B.1620C.6480D.2006
07.如图,已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.
08.如图,AB∥CD,∠BAE=30°,∠DCE=60°,EF、EG三等分∠AEC.问:
EF与EG中有没有与AB平行的直线?
为什么?
09.如图,已知直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
⑴求∠EOB的度数;
⑵若平行移动AB,那么∠OBC:
∠OFC的值是否随之发生变化?
若变化,找出变化规律;若不变,求出这个比值.
⑶在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?
若存在,求出其度数;若不存在,说明理由.
10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.
11.如图,正方形ABCD的边长为5,把它的对角线AC分成n段,以每一小段为对角线作小正方形,这n个小正方形的周长之和为多少?
12.如图将面积为a2的小正方形和面积为b2的大正方形放在一起,用添补法如何求出阴影部分面积?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省深圳市罗湖区华英学校人教版七年级数学培优讲义无答案第13讲 平行线的性质及其应用 广东省 深圳市 湖区 学校 人教版 七年 级数 学培优 讲义 答案 13 平行线 性质 及其 应用