一元二次方程的概念及其解法doc.docx
- 文档编号:9119368
- 上传时间:2023-05-17
- 格式:DOCX
- 页数:36
- 大小:52.35KB
一元二次方程的概念及其解法doc.docx
《一元二次方程的概念及其解法doc.docx》由会员分享,可在线阅读,更多相关《一元二次方程的概念及其解法doc.docx(36页珍藏版)》请在冰点文库上搜索。
一元二次方程的概念及其解法doc
一元二次方程的概念及解法和讲义
知识点一:
一元二次方程的概念
(1)定义:
只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就
......................
是一元二次方程。
(2)一般表达式:
ax2bxc0(a0)
(3)四个特点:
(1)只含有一个未知数;
(2)且未知数次数最高次数是2;
(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式
方程,若是,再对它进行整理.如果能整理为
ax2
bxc
0(a
0)的形式,
则这个方程就为一元二次方程.
(4)将方程化为一般形式:
ax2
bx
c
0时,应满足(a≠0)
例1:
下列方程①x2+1=0;②2y(3y-5)=6y2+4;③ax2+bx+c=0;④1
5x30,
x
其中是一元二次方程的有
。
变式:
方程:
①2x21
1②2x2
5xy
y2
0③7x2
10
④y2
0中一元
3x
2
二次程的是
。
例2:
一元二次方程(13x)(x
3)
2x2
1化为一般形式为:
,
二次项系数为:
,一次项系数为:
,常数项为:
。
变式1:
一元二次方程3(x—2)2=5x-1
的一般形式
是
,二次项系数是
,一次项系数
是
,常数项是
。
变式2:
有一个一元二次方程,未知数为
y,二次项的系数为-1,一次项的系数
为3,常数项为-6,请你写出它的一般形式______________。
例3:
在关于x的方程(m-5)xm-7+(m+3)x-3=0中:
当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。
变式1:
已知关于x的方程(m+1)x2-mx+1=0,它是(
)
A.一元二次方程
B
.一元一次方程
C.一元一次方程或一元二次方程
D.以上答案都不对
变式2:
当m
时,关于x的方程(m3)xm27
x
5是一元二次方程
知识点二:
一元二次方程的解
(1)概念:
使方程两边相等的未知数的值,就是方程的解。
(2)应用:
利用根的概念求代数式的值;
【典型例题】
1.
已知x
2是一元二次方程x2
mx
2
0的一个解,则m的值是(
)
A.3
B.3
C.0
D.0或3
2.
已知2
y
2
y
3
的值为
,则
4y
2
2y
1
的值为
。
2
3.
若x=a
是方程x2-x-2015=0
的根,则代数式2a2-2a-2015值
为
。
4.
关于x的一元二次方程
2
2
2
4
0
,则
的值
a
x
x
a
的一个根为0
a
为
。
5.
已知关于x的一元二次方程ax2
bx
c
0a
0的系数满足ab
c
0,则
此方程必有一根为
。
【举一反三】
1.
已知关于x的方程x2
kx6
0的一个根为x
3,则实数k的值为(
)
A.1
B.1
C.2
D.2
2.
若m2-5m+2=0,则2m2-10m+2016=
。
3.
若关于x的方程(a+3)x2-2x+a
2-9=0有一个根为0,则a=
。
4.
一元二次方程ax2+bx+c=0,若4a-2b+c=0
,则它的一个根是
。
5.若x=1是关于x的一元二次方程ax2bxc0a0一个根,求代数式
2007(a+b+c)的值
知识点三:
解一元二次方程
一元二次方程的解法:
直接开平方法、配方法、公式法、因式分解法.
一:
直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平
方法。
直接开平方法适用于解形如(x
m)2
n的一元二次方程。
根据平方根的定
义可知,xm是n的平方根,当n
0时,xm
n,x
mn,当n<0
时,方程没有实数根。
用直接开平方法解一元二次方程的理论根据是平方根的定义,达到降次转化之目的。
(1)形如x
2
p。
当p=0时,x1x20
p(p
0)的方程的解是x=
(2)形如mxn
2
0的方程的解为x=
p
n。
pp
m
形如mx
a
2
的方程可先化成
x
2
n的形式,再用直接开
n0
a
m
平方法解。
【例题讲解】
1、方程(x-2)2=9的解是(
)
A.x1=5,x2=-1
B.x1=-5,x2=1C.x1=11,x2=-7
D.x1=-11,x2=7
2、若方程x2=m的解是有理数,则实数
m不能取下列四个数中的(
)
A.1
B
.4
C
.1
D
.1
4
2
2
3、对于形如x
p的一元二次方程,能直接开平方的条件是
___________________。
4、方程x
2
16
0的根是________________________。
5、用直接开平方法解下列方程:
2
2
2
(1)16x
81
(2)3m
24
2
2
(3)9x250
(4)42x1360
【同步训练】
1、用直接开平方法解方程(x-3)2=8,得方程的根为(
)
A.x=3+2
3
B
1
2
2
2
.x=3+2
,x=3-2
C.x=3-2
2
D
1
=3+2
3
2
3
.x
,x=3-2
2、方程1
(x-3)2=0的根是(
)
2
A.x=3B.x=0C.x1=x2=3D.x1=3,x2=-3
3、方程2x
2
6
900的根是________________________。
4、方程t2
2
169的根是_____________________。
5、用直接开平方法解下列方程:
128
(1)x7
0
(2)12y1
2
2
(3)
4(3
x
1)2
9
0
()
2
4
4x16x169
二:
配方法
配方法:
将形如ax2bxc0(a0)的一类方程,化为(mxn)2p形
式求解的方法叫做配方法。
一般步骤:
(1)把常数项移到方程右边;
(2)方程两边同除以二次项系数,化二次项系数为1;
(3)方程两边都加上一次项系数一半的平方;
(4)原方程变形为(xm)2n的形式;
5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.
【例题讲解】
1、用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是(
)
A.(x-1)2=4
B.(x+1)2=4
C
.(x-1)2=16
D.(x+1)2=16
2、若一元二次方程式x2-2x-3599=0
的两根为a、b,且a>b,则2a-b之值为何?
(
)
A.-57
B
.63
C
.179D
.181
3、用适当的数填空:
①、x2
+6x+
=(x+
)2
②、x2-5x+
=(x-
)2;
③、x2
+x+
=(x+
)2
④、x2-9x+
=(x-
)
2
4、将二次三项式
2x2-3x-5进行配方,其结果为_________.
5、已知4x2-ax+1
可变为(2x-b)2的形式,则ab=_______.
6、将x2-2x-4=0
用配方法化成(x+a)2=b的形式为_______,?
所以方程的根
为_________.
2
2
m的值是
7、若x
+6x+m是一个完全平方式,则
8、用配方法解下列方程:
(1)
2
12
15
0
()
2
()
2
x
x
2x8x9
33x5x2
1
2
()
2
()
2
(4)
4
4
0
4
x
x
5x4x30
62x47x
9、用配方法求解下列问题
(1)求2x2-7x+2的最小值;
(2)求-3x2+5x+1的最大值。
【举一反三】
1.把方程x+3=4x配方,得(
)
A.(x-2)2=7
B.(x+2)2=21
C.(x-2)2=1
D.(x+2)2=2
2.用配方法解方程x2+4x=10的根为()
A.2±10
B.-2±14
C.-2+10
D.2-10
3.用配方法解下列一元二次方程
(1)
2
4
96
()
2
x
x
2x4x50
(3)
2
x
2
3
x
1
0
()
2
4
3x2x70
三:
公式法
(1)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
b
2
c
2
b
2
c
b2
由配方法得
b
,化简:
x
a
2a
x
a
4a2
2a
2a
b
2
4ac
b2
2
2
4ac
b
b2
4ac
x
x
bb
x
2a
4a2
4a
2
2a
4a2
2a
4a2
x
b
b2
4ac
b
b2
4ac
2a
2a
x
2a
一元二次方程
ax2
bx
c0(a0)的求根公式:
x
b
b2
4ac
(b
2
4ac
0)
2a
x
b
b2
4ac,x
b
b2
4ac
1
2a
2
2a
公式法的步骤:
就把一元二次方程的各系数分别代入,这里
a为一次项系数,
b
为二次项系数,c为常数项。
【典型例题】
例1:
一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根
是_____,当b-4ac<0时,方程_________.
例2:
用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.
例3:
一元二次方程x2-2x-m=0可以用公式法解,则m=().
A.0B.1C.-1D.±1
例4:
不解方程,判断所给方程:
①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实
数根的方程有()
A.0个B.1个C.2个D.3个
例5:
方程(x+1)(x-3)=5的解是()
A.x1=1,x2=-3B.x1=4,x2=-2C.x1=-1
,x2=3
D.x1=-4
,x2=2
例6:
一元二次方程
x2
22x
6
0的根是(
)
A.x1
x2
2
B.
x1
0,x222
C.x1
2,x232
D.
x1
2,x2
32
例7:
一元二次方程x2-3x-1=0
的解是
。
例8:
用公式法解下列方
(1)
3x
2
5x20;
(2)2x
2
3x
30;
()
x
2
2x10
;
3
例9:
若x2-xy-3y2=0(y>0),求x的值.
y
【举一反三】
1.
用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.
2.
用公式法解方程
4y2=12y+3,得到(
)
A.y=36
B.y=36
C.y=323
D.y=323
2
2
2
2
3.不解方程,判断所给方程:
①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数
根的方程有()
A.0个B.1个C.2个D.3个
4.用公式法解方程
(1)x2+15x=-3x;
(2)x2+x-6=0;(3)3x2-6x-2=0;(4)4x2-6x=0
四:
因式分解法
因式分解法的步骤是:
(1)将方程右边化为0;
(2)将方程左边分解为两个一次因式的乘积:
(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.
例题讲解:
(1)
x2
+
x=;
(2)4
x
2-=;
()(
x
2)2
2
x
40
;
120
10
3
练习巩固:
(2)
x2
-
x-=;
(3)(
x-
1)(
x+
3)
=;
x
2+
x-=;
4
210
12(3)3
2
10
(4)10
x
2-x-=;
(5)(
x-
1)
2-
4(
x-
1)
-=.
30
210
练习巩固
用适当方法解下列方程
(1)
x2
-
x+=;
(2)(
x-
2)
2=;
()x
2-
x+=;
4
30
256
3
3
10
(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;
(7)7-2x2=-15(8)2x22x300(9)2x2-8x=7
(10)
5x2
-
(5
2
+
1)
x+
10=;
(11)(
x+
5)
2-
2(
x+
5)
-=.
0
80
知识点四:
判定根的情况(韦达定理)
根的判别式及应用(=b24ac)0
判定一元二次方程根的情况:
>0,方程有两个不相等的实数根;=0,方程有两个相等的实数根;<0,方程没有实数根.
确定字母的值或取值范围:
应用根的判别式,其前提为二次项系数不为0.
韦达定理:
实系数一元二次方程ax2+bx+c=0(a≠0)存在实数解x1,x2,那么x1+x2=-b,x1x2=c.这是在初中时韦达定理的定义,但在高中时应用就更为
aa
广阔.由代数基本定理可推得:
任何一元n次方程在复数集中必有根,因此,该方程的左端可以在复数范围内分解成一次因式的乘积形式,两端比较系数即得韦达定理,所以韦达定理在复数范围内同样适用.
一元二次方程ax2
(≠)在有解的情况下,两个解为
1
b
b2
4ac,
+bx+c=0a0
x=
2a
2
bb2
4ac
,通过计算得到结论x1
2
=-
b,x12
c.
x=
+x
x=
2aaa
例1、已知关于x的一元二次方程x2-2x+k=0
(1)方程有两个不相等的实数根,求k的取值范围;
(2)在
(1)中当k取最大整数时,求所得方程的实数根.
2、已知关于x的方程kx2+1kx-2=0有两个不相等的实数根,求k的取值范围.
.........
例2已知x1,2是方程
2
-
16=0
的两实数根,求x2
x1
的值
.
x
2x+14x
x1
x2
练习:
1.已知x1,x2是方程3x2+2x-1=0的两个实数根,求x12x22的值.
2.设α,β是一元二次方程
2
2
x
+3x-7=0
的两个实数根,求ααβ的值
+4+.
综合练习
1、如果关于x的方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.请
根据以上结论,解决下列问题:
(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;
(2)已知a,b满足a2-15a-5=0,b2-15b-5=0,求a
b的值;
b
a
(3)已知a,b,c均为实数,且a+b+c=0,abc=16,求正数c的最小值.
2、若
x1,x2是一元二次方程
ax2+bx+c=0的两根,则有
x1+x2=
b,x1x2=c
.
a
a
这是一元二
次方程根与系数的关系,我们可以利用它来解题
.例如,
已知
x1,
x2是方程
x2+6x-3=0
的两根,求
x1
2+x2
2的值.
解法如下:
∵x1+x2=-6,x1x2=-3,
∴x12+x22=(x1+x2)2-2x1x2=(-6)2-2×(-3)=42.
若x1,x2是方程x2+2x-2007=0的两个根,试求下列各式的值:
(1)x1
2+x2
2;
(2)1
1;(3)
(x1-5)(x2-5);(4)|x1x2|.
x1
x2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 概念 及其 解法 doc