书签 分享 收藏 举报 版权申诉 / 53

类型9E机结构详细讲解2空气动力学部分.docx

  • 文档编号:9802804
  • 上传时间:2023-05-21
  • 格式:DOCX
  • 页数:53
  • 大小:1.32MB

重力

重力是趋向把所有物体朝地球中心拽的拉力。

重心可以看成是飞机的所有重量都集中于所在的一点。

如果飞机的重心恰好得到支持,飞机就会平衡在任何姿态。

也会注意到重心占飞机的主导重要性,因为它的位置对稳定性有极大的影响。

重心的位置通过每个飞机的总体设计来确定。

设计者要确定压力中心(CP)会移动多大距离。

他们然后把重心朝相应的飞行速度下的压力中心前面固定,这是为了提供足够的恢复运动以保持飞行平衡。

重力和升力有明确的关系,推力对应于拉力。

这个关系简单,但是对于理解飞行动力学很重要。

升力是作用于机翼上的向上的力,和相对风方向垂直。

需要的升力是用来克服飞机的重力(由作用于飞机物质的地球引力导致)。

这个重力通过飞机的重心向下作用。

在稳定的平飞中,此时升力大小等于重力,飞机处于平衡状态,高度不增加也减少。

如果升力变得小于重力,飞机将会降低高度。

当升力大于重力时,飞机飞行高度增加。

升力

飞行员可以控制升力。

随时控制轮子向前或者向后一点,迎角就会改变。

当迎角增加时,升力增加(假设其他因素不变)。

当飞机到达最大迎角时,升力开始快速变小。

这就是失速迎角,或者叫紊流点。

在继续深入讨论升力和如何控制它之前,必须先说一下速度。

机翼的外形不会有效,除非它持续不断的冲击新的空气。

飞机若要保持飞行,它必须持续移动。

升力和飞机速度成相应的比例。

例如,如果迎角和其他因素不变的话,以200节速度飞行的飞机所得的升力是它在100节速度飞行时升力的四倍。

实际上,如果迎角增加,飞机就不能保持继续保持同一迎角而高度不变的平飞;升力会增加,结果升力增加使飞机爬升。

因此,为了维持升力和重力的平衡,和为了保持飞机平直的平衡飞行状态,只要速度增加,升力必须减小。

这通常是通过减小迎角来实现的,如降低机头。

相反的,当飞机速度减慢时,降低的速度要求增加迎角来维持足够的升力以保持飞行。

当然,如果要避免失速的话,迎角可以增加的范围是有限制的。

所以,如果所有其他因素不变的话,可以得出一个结论,对于每一个迎角,有一个要求的对应指示空速来维持稳定的高度-非加速飞行。

记住,这只适用于维持水平飞行。

由于机翼在一个相同的迎角上总会失速,如果增加重量,升力必须也要增加,如果迎角保持恒定且恰好在临界迎角,这样做的唯一方法是增加速度。

升力和阻力也随空气密度直接变化。

好几个因素会影响密度,如压力,温度和湿度。

记住,在18000英尺高度,空气密度是海平面上密度的一半。

因此,为了在较高的高度维持升力,对于任何迎角都必须以更高的真实空速来飞行。

此外,暖空气密度比冷空气密度低,潮湿空气密度小于干燥空气的密度。

这样,在热的潮湿天气,对于任何给定迎角都必须以比干冷天气下更大的真实空速飞行。

如果密度因素降低,总升力必须等于总重量才能维持飞行,它遵循其他因素之一必须增加。

通常那些增加的因素是空速或者迎角,因为这些因素可以由飞行员直接控制。

也要指出,升力随机翼的面积直接变化,机翼的平面图没有改变。

如果机翼有相同的比例和机翼剖面,迎角相同时,200平方英尺平面面积的机翼升力是100平方英尺面积机翼的两倍。

如你所见,从飞行员角度的两个主要因素是升力和速度,因为这两个因素的控制是最容易的和准确的。

当然,飞行员可以通过调整来控制密度,如果机翼恰好有可以扩大机翼面积的襟翼,那么也可以控制机翼面积。

但是,对大多数情况,飞行员控制升力和速度来操纵飞机。

例如,在平直飞行状态,以恒定高度巡航时,调整升力以匹配飞机速度或者巡航速度来保持高度,而当升力等于重力时就可以维持平衡状态。

在着陆进近中,当飞行员希望以实用的慢速着陆时,增加升力到接近最大以维持升力等于飞机的重量是有必要的。

翼尖涡流

对机翼的作用力提供升力的同时也产生了诱导阻力。

当机翼以正迎角飞行时,机翼的上下表面有压力差是确定的,上表面的压力比大气压力低,下表面压力等于或者大于大气压力。

由于空气总是从高压区域向低压区域流动,阻力最小的路径是朝飞机的翼尖,从机翼下方来的空气顺机身翼展方向向外绕翼尖运动。

这个气流导致在翼尖溢出,所以产生了称为涡流的漩涡。

同时,机翼上表面的空气趋于流向机身和机翼的尾缘。

这个气流在机翼尾缘的内侧形成一个类似的涡流,但是由于机身阻止了向内的流动,这个涡流不是很重要。

从而,翼尖的气流方向偏差是最大的,在未受限制的侧面气流是最强的。

气流在翼尖处向上弯曲,它和机翼的下洗气流结合形成了更快的旋转的尾部涡流。

这些漩涡增加了阻力,因为能量消耗在产生紊流上。

接着可以看到无论何时机翼产生升力,诱导阻力就会产生,翼尖涡流随之出现。

就像升力随迎角增加而增加,诱导也随之增加。

这是因为迎角增加后,机翼上下表面的压力差更大,空气的侧向流动也就更强;进而,这导致了更强烈的涡流的形成,结果紊流更多,诱导阻力也更多。

翼尖涡流的强度或者力度直接的和飞机的重量成正比,和翼展及飞机速度成反比。

较重和慢速的飞机,迎角越大,翼尖涡流越强。

因此,飞机在飞行的起飞爬升和着陆阶段会产生最大强度的翼尖涡流。

地面效应

飞机在畅通的地面以稍微低于高空平飞要求的空速来飞行是可能的。

这样的结果源于一种现象,甚至对一些有经验的飞行员来说,知道这个比理解它更重要。

当飞行的飞机离地面几英尺时,飞机周围的三个方向的气流模式开始发生改变,因为机翼周围气流的垂直分量受地面限制。

这就改变了机翼的升流和翼尖涡流,如图3-7。

这些由于地面而导致的基本影响称为“地面效应”。

地面效应时由于飞机飞行时气流模式受地面(或者水面)的干扰导致的。

当尾部表面和机身的空气动力学特性因地面效应改变时,由于接近地面受到的主要影响是机翼的空气动力学特性的变化。

当机翼遇到地面效应且维持在恒定的升力系数时,那么上升流和下洗流和翼尖涡流随之减少。

诱导阻力是支持飞机的机翼导致的,机翼通过加速空气向后来获得飞机的升力。

机翼上表面压力的降低是升力的主要基础,这样说是对的,但是这只是推动空气向后的总效果的其中之一。

下洗流越多,机翼推动空气向下的难度就越大。

大迎角时,总的诱导阻力就大,在实际的飞行中就相应于较低的空速,以可以这么说,低速飞行时诱导阻力是主导地位。

然而,由于地面效应导致的翼尖涡流减少改变了翼展方向的升力分布,降低了诱导迎角和诱导阻力。

所以,在地面效应中机翼只要较小的迎角就能产生相同的升力系数,或者如果维持迎角不变,将导致升力系数的增加。

如图3-8

地面效应也会改变所需推力和速度的关系。

由于诱导阻力在低速时占主导,因地面效应使诱导阻力降低,这样就导致了最重要的低速时所需推力的降低。

地面效应导致的诱导流降低使得诱导阻力有重大的减少,但是对寄生阻力无直接影响。

诱导阻力减少的结果就是使得在低速飞行时所需要的推力也减少了。

由于升流,下洗流和翼尖涡流的改变,可能空速系统有定位(设备)误差,这和地面效应有关。

大多数情况下,地面效应会导致静态源的局部压力增加,出现对空速和高度的偏低指示。

因此,会要求飞机空降的指示空速低于正常要求的值。

为了使地面效应有较大的程度,机翼必须相当的接近地面。

地面效应的直接结果之一就是诱导阻力在恒定升力系数处随机翼距地面的高度变化。

当机翼的高度等于翼展时,诱导阻力只降低1.4%。

然而,当机翼高度为四分之一翼展时,诱导阻力降低23.5%,机翼高度等于翼展十分之一时,诱导阻力降低47.6%。

所以,只有机翼非常靠近地面时,诱导阻力才有很大的降低。

因为这种变化,地面效应在起飞离地和着陆触地的一瞬间是最明显的。

在飞行的起飞阶段,地面效应引起一些重要的关系。

飞机起飞后离开地面效应会遇到和着陆时进入地面效应相反的情况,例如飞机离开地面效应将会:

∙要求增加迎角来维持相同的升力系数

∙诱导阻力增加,所需要的推理也要增加

∙稳定性降低,机头在瞬间会向上翘

∙产生静态源压力的减少,指示空速增加

应当指出在获得建议着陆速度之前这些总效果可能会对着陆尝试危险。

由于地面效应中阻力降低,飞机好像能在低于建议速度下正常起飞。

但是,当飞机以不足的速度飞出地面效应时,更大的诱导阻力可能会导致恰好临界的初始爬升性能。

在,如大的总重量,高密度高度,高温的极端条件下,起飞时空速的不足可以使飞机飞起来,但是可能不足以飞出地面效应。

这时,飞机可能在最初以不足的速度飞行,然后又下降回跑道。

不要试图强制飞机以不足的速度飞起来是非常重要的;为提供充足的初始爬升性能建议起飞速度是非常必要的。

因为这个原因,在收回起落架或者襟翼之前必须进入确定爬升状态。

在飞行的着陆阶段,也必须要理解和认识近地效应。

如果飞机以恒定迎角被带进到地面效应,飞机升力系数会增加,所需要的推力会减少。

因此,会出现“漂浮”效应。

由于地面效应中阻力的降低和停车减速,拉平点的任何多余速度都会导致相当长的“漂浮”距离。

当飞机接近触地点时,低于翼展高度时的地面效应是最容易发生的。

在飞机接近地面的最后进近阶段,有必要降低动力配置或者降低所需的推力,这样可以让飞机在预期滑行轨迹上滑行。

 

飞机的轴向

飞行中无论什么时候飞机改变它的飞行姿态和位置,它都绕三个轴向的一个或者多个旋转,这些轴向是通过飞机重心的想象出来的线。

飞机的轴向可以看成飞机可以绕这它转动的假想轴,非常象车轮旋转的那个轴。

在三个轴的相交点,每一个轴都和其他两个轴成90度角。

从飞机头部到尾部沿机身长度方向扩展的轴称为纵轴。

从机翼到机翼的延伸轴称为横轴。

垂直通过重心的轴叫垂直轴。

图3-9

飞机关于其纵轴的运动类似于船从一边到一边的摇摆。

事实上,描述飞机三个轴向运动的名字最初是航海术语。

这三个术语被采纳到空气动力学术语就是因为飞机和航船之间运动的类似性。

>

>

根据对航海术语的采用,飞机纵轴固定后的运动称为“侧滚”,横轴固定时的运动叫“俯仰”;最后,飞机垂直轴固定后的运动叫“偏航”,就是飞机头水平的左右运动。

>

飞机的三个运动由三个控制面控制。

侧滚由副翼控制,俯仰由升降舵控制,偏航由方向舵控制。

对这些控制的使用在第四章解释-飞行控制。

运动和力臂

物理学研究表明如果一个物体可以自由旋转的话,将总是绕它的重心旋转。

在空气动力学术语中,对飞机的趋向绕它的重心旋转的精确测量叫力矩。

力矩是所施加的力和作用点距离的乘积。

力臂是从参考点到作用力的距离。

为计算飞机的重量和平衡,力矩用力臂距离乘以飞机的重量来表示,简单说是英寸磅(距离乘以重量,公制单位是牛顿米)。

飞机设计者把飞机的重心位置或前或后的定位在尽可能靠近平均动力弦的20%位置。

如果推力线设计成水平的通过重心,这样当动力改变时也不会导致飞机俯仰,因此飞行中不管是有动力还是停机状态力臂都不会有差别。

尽管设计者对阻力的位置可以有些控制,他们也不总是能够让合成阻力通过飞机的重心。

不过,他们最能够控制的其中之一就是尾部的大小和位置。

目标是让力矩(由于阻力,推力和升力产生)尽可能小;用适当的尾部位置作为任何飞行条件下的飞机提供纵向平衡的手段。

飞行时,除了通过改变迎角来控制升力中心外,飞行员没有对作用于飞机的力的位置作直接控制。

然而,迎角的这个改变会立即的影响到其他力的改变。

所以,飞行员不可能单独改变一个力的位置而不改变其他效果。

例如,空速的改变伴随升力的改变,以及阻力的改变,还有尾部向上和向下的力也会改变。

当象紊流和阵风这样的力作用于飞机时让飞机移动,飞行员通过提供反向的控制力来对抗这样的力。

某些飞机在载荷变化时引起重心位置的变化。

配平设备用来抵消由燃油消耗,载荷或者乘客或货物的非载荷因素导致的力。

升降舵配平片和可调节水平尾翼组成了为飞行员提供载荷配平的最常用设备。

在大飞机的大范围飞行平衡中,如果不提供配平的手段,那么飞行员必须施加的用于控制的力将会是过多的且使人容易疲劳。

设计特性

每一个飞过很多类型飞机的飞行员已经注意到操作是有些区别的,那就是对控制压力的抵抗和相应都有他们自己的方式。

训练型飞机对控制有快速的相应,而运输型的飞机通常感觉控制繁重而且对控制压力的响应也更慢。

通过考虑特定的稳定性和机动要求,这些特征可以设计到飞机中使特定用途的飞机容易实现。

在接下来的讨论中,要总结一下更为重要的飞机稳定性方面;讨论稳定性是如何分析的;以及不同飞行条件下他们的关系。

简而言之,稳定性,机动性和可控性的主要区别如下:

稳定性-这是飞机纠正那些可能改变它的平衡条件的内在品质,以及返回或继续在原始航迹上飞行的能力。

这是一个飞机的主要设计特性。

机动性-这是飞机容易机动且承受机动引发的压力的能力。

它受飞机的重量,惯量,大小,飞行控制的位置,结构强度,以及发动机等因素决定。

这也是一个飞机的主要设计特性。

可控性-这是飞机对飞行员控制的响应能力,特别考虑的是航迹和姿态。

它是飞机对飞行员操作飞机时施加控制的响应特性,和稳定性特性无关。

稳定性的基本概念

飞机飞行的航迹和高度仅受飞机的空气动力学特性,推进系统和它的结构强度限制。

这些限制表明了飞机的最大性能和机动性。

如果飞机要提供最大效用,在这些限制的全部范围内必须是安全可控的,且不超出飞行员的强度和要求额外的飞行能力。

如果飞机沿任意航迹笔直稳定的飞行,那么作用于飞机的力必定是静态平衡的。

任何物体的平衡受到破坏后的反应和稳定性有关。

有两种稳定性:

静态的和动态的。

先讨论静态的平衡,这里的讨论将用到下面的定义:

1)平衡-所有作用于飞机的相反的力都是

配套讲稿:

如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

特殊限制:

部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

关 键  词:
结构 详细 讲解 空气动力学 部分
提示  冰点文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:9E机结构详细讲解2空气动力学部分.docx
链接地址:https://www.bingdoc.com/p-9802804.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2


收起
展开